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ABSTRACT

Bauer, Kenneth W., Jr. Ph.D., Purdue University, May 1987.
Control Variate Selection for Multiresponse Simulation.
Major Professor: James R. Wilson.

- A solution is offered to the general problem of optimal selection of

control variates. Solutions are offered for two different cases of the general

problem: (-& when the covariance matrix of the controls is unknown, and (b)

when the covariance matrix of the controls is known and is incorporated

into point and confidence region estimators. For the second case a new

estimator is introduced. Under the assumption that the responses and the

controls are jointly normal, the unbiasness of this new estimator is

established , and its dispersion matrix is derived. A selection algorithm is

implemented which locates the optimal subset of controls. The algorithm is

based on criteria derived for the two cases listed above. A promising new

class of controls is introduced which are called ' routing variables". The

asymptotic distribution of these controls is derived as well as their

asymptotic mean and variance. Finally, the performance of the selection
or

algorithm is investigated and the new estimator is contrasted with the
n

classical estimator.
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ABSTRACT

Bauer, Kenneth W., Jr. Ph.D., Purdue University, May 1987.
Control Variate Selection for Multiresponse Simulation.
Major Professor: James R. Wilson.

A solution is offered to the general problem of optimal selection of

wa: control variates. Solutions are offered for two different cases of the general

problem: (a) when the covariance matrix of the controls is unknown, and (b)

when the covariance matrix of the controls is known and is incorporated

.1-... into point and confidence region estimators. For the second case a new

estimator is introduced. Under the assumption that the responses and the

-controls are jointly normal, the unbiasness of this new estimator is

established , and its dispersion matrix is derived. A selection algorithm is

implemented which locates the optimal subset of controls. The algorithm is

based on criteria derived for the two cases listed above. A promising new

class of controls is introduced which are called "routing variables". The

asymptotic distribution of these controls is derived as well as their

asymptotic mean and variance. Finally, the performance of the selection

algorithm is investigated and the new estimator is contrasted with the

classical estimator.
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ABSTRACT

Bauer, Kenneth W., Jr. Ph.D., Purdue University, May 1987.
Control Variate Selection for Multiresponse Simulation.
Major Professor: James R. Wilson.

A solution is offered to the general problem of optimal selection of

control variates. Solutions are offered for two different cases of the general

problem: (a) when the covariance matrix of the controls is unknown, and (b)

when the covariance matrix of the controls is known and is incorporated

into point and confidence region estimators. For the second case a new

estimator is introduced. Under the assumption that the responses and the

controls re jointly normal, the unbiasness of this new estimator is

established , and its dispersion matrix is derived. A selection algorithm is

implemented which locates the optimal subset of controls. The algorithm is

based on criteria derived for the two cases listed above. A promising new

class of controls is introduced which are called "routing variables". The

asymptotic distribution of these controls is derived as well as their

asymptotic mean and variance. Finally, the performance of the selection

algorithm is investigated and the new estimator is contrasted with the

classical estimator.
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CHAPTER 1

INTRODUCTION

The method of control variables is one of the main variance reduction

techniques used in discrete event simulation. This method attempts to exploit

-: correlations between output responses and associated auxiliary variables with

* known means that can be observed during the course of a simulation run.

Although control variables can be external (that is, similar variables in a

much simplified version of the original model which is driven by the same

random number streams as the original model), our research deals only with

t .nternal or so-called conericomtard controls.

There are several tactical issues that must be addressed to employ

control variables successfully. One such issue is efficiency. Several authors

,see review of the literature) have addressed the fact that a trade-off must be

recognized in the application of the control variable technique. Various loss

factors have been derived to quantify the diminishing marginal returns that

are experienced (on the average) when additional control variables are

included in the variance reduction scheme. This trade-off arises because the

application of control variables requires the estimation of additional control

coefficients. If the sample size is taken to be constant, then the variance

reduction achieved by the use of additional controls can be offset by the

variance inflation due to the estimation of additional coefficients. Hence a

ow r 4 r'

i&T&



- ---- 9VV

2

selection scheme is needed to pick a good subset of' the candidate controls.

The control variable selection problem is important because more often

than not a simulator trying to use control variables finds himself confronted

with multiple candidates for controls. The literature to date only offers ad

hoc methods to solve this problem. Several authors have called for research

into this problem; in particular Lavenberg, Moeller, and Welch (1982),

Rubinstein and Marcus (1985), and Venkatraman and Wilson (1986) have all

suggested methods for developing an effective control variate selection

procedure. Unfortunately there has been no follow-up work on any of these

proposals.

1.1 Research Objectives

dd Our primary objective is to formulate and evaluate control variate

selection criteria for multiresponse simulation experiments in which we seek

-. point and confidence region estimators for the mean response. We

distinguish the following cases: (a) the covariance matrix of controls is

unknown, and (b) the covariance matrix of the controls is known and is

incorporated into the point and confidence region estimator. The second case

requires the introduction of a new point estimator and the the derivation of

its mean vector and covariance matrix. We also introduce a new class of

controls that we call "routing variables", and we establish the asymptotic

distribution of these controls so that we may exploit them not only in case

(a) but also in case (b). The experimental evaluation phase of the research

includes a comparison of the performance of the controlled estimation

procedures described in (a) and (b) above.

Die
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1.2 Organization of the Research

We review both the control variable literature as well as the pertinent

statistical literature which bears on variable selection in the context of linear

regression. The literature review is presented in Chapter 2. Chapter 3

presents theoretical arguments which lead to selection criteria for both cases

mentioned above. In Chapter 3 we also derive the properties of the new

estimator Y(',). Chapter 4 describes our experimental setup. We discuss the

models used, the experimental layout, and the necessary matrix methods

required to implement the selection algorithm. In Chapter 5 we summarize

the results of our experiments. In Chapter 6 we present an overview of the

research and propose directions for future research.
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CHAPTER 2

LITERATURE REVIEW

The first notable, comprehensive discussion of control variables (actually

variance reduction techniques in general) is offered by Kleijnen (1974). A

more rigorous, up to date survey of variance reduction techniques is found in

Wilson (1984).

2.1 Univariate Simulation Response with a Single Control

Assume Y is an estimator of py, where py is the mean of some response

of interest. Let X be a variable observed during the course of the simulation.

We assume that X is highly correlated with the response, and further that its

mean tx is known. The variable X is the control variable.

Consider the "controlled estimator"

Y (b) = Y - b(X- lux) .11

.:

Note, if b is a constant

E(Y (b)) =y , (2.1.2)

4.

'5.
'5
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and var(Y(b)) = var(Y) + b2var(X) - 2bcov(Y,X) . (2.1.3)

So Y(b) is an unbiased estimator of py. The variance of Y(b) will be smaller

than the variance of Y if

2b cov(Y, X) > b 2var(X) . (2.1.4)

A little calculus reveals that

cov(Y,X) (2.1.5)
var(X)

minimizes (2.1.3). Plugging (2.1.5) into (2.1.3) yields the minimum variance

i2

var(Y(,3)) -- (1-py) var(Y), (2.1.6)

where Pyx is the correlation coefficient between Y anO X. Following Porta

Nova (1985), we obtain an unbiased point estimator of py by averaging the

controlled observations

Y 1 (,3) Y.-2( - t'x), Zi 1, ... ,K, (2.1.7)

w* d

to form

K
Y(j3) = ZY,(3)/K, (2.1.8)

@4



where K is the sample size. Since we do not know the optimal value 3, we

must estimate it. An intuitive estimate of 3 replaces the right-hand side of

(2.1.5) with the appropriate sample quantities. This solution turns out to be

the least squares solution for 3. When the assumption of joint normality

between Y and X is made, then the least squares solution is also the

maximum likelihood solution. We estimate 3 by

K

= K,(21)
" E (-Y0

'i-i

and the point estimator of My is then

- I K
py(3) = EY,(3)/K. (2.1.10)

2--I

We obtain an interval estimate for pty by application of regression theory.

First we make note of what happens under the assumption of joint normality

for Y and X. In this situation the conditional distribution of Y given X is also

normal:

Y X=x - N(gy + 3 (x- tUX),O,) (2.1.11)

where

(T' = (1 - Ply) (2.1.12)

.
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and

cry - var(Y) (2.1.13)

We see that if X=x, there is a linear regression of Y on X. Given we know

values of the control variable X, as well as its mean, we see that the

conditional mean of Y has two terms. The first term is Ay, the parameter to

be estimated. The second term is a correction due to the particular values of

the control. To get at Ay, we will subtract out these corrections as in

(2.1.7). Equation (2.1.11) shows us that each observed Yj has the form

Yi = uy+i3(X- gx) + E 1 < i < K, (2.1.14)

S..-- _

where E, are the residuals

" N(0,0r2 ) (2.1.15)

There are two unknown quantities in (14), so we can apply the method of

- .r. least squares to solving for 1uy and 3. The parameter py is the intercept of

* equation (14) and under the joint normality assumption for X and Y,

Ay(3) "N (,y,17'2s11), (2.1.16)

.

o'f.
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where st, is the upper left-hand corner entry of the matrix (D'D) - ' where

1 Xi-tX

1 X 2 -J x

1 X 3 -X
D = D (2.1.17)

L 1 XK- AX

Now to form a confidence interval about / y () we will first need an estimate

of o,2 . Remembering that o2 represents that variability in Y given we have

accounted for X, the formula for the residual mean square error given in

regression theory makes good intuitive sense as an estimator of o2, that is

K A.- (y,( -yi)2

f "2: K - 2 (2.1.18)0... K-2

where

Y,3) = Ay(3) + 3(X, - /x), 1 < i <K (2.1.19)

AA

.:< Now it can be shown (Hogg and Craig (1970), pg. 337) that

" K-2

:.



where tK2 is a Student-t distribution with K-2 degrees of freedom. From

regression theory s1l is given by ( Draper and Smith (1981), pg. 83 and some

algebra because our X is ix -

EZ(X _ AX) 2..- i

S1 1  K _(2.1.21)

where

K
SX,

K(2.1.22)

A 100(1-a~)% confidence interval is given by

AY(O ±1 tK2-2 '51-(..3

As mentioned in the introduction we expect to incur a loss due to the

estimation of 0. In this case where we only have a single control variable, we

expect that the realized variance reduction should, on the average, decrease

as sample size decreases. This loss is quantified via the loss factor.

Following Lavenberg, Moeller and Welch (1982), we define the loss factor as

the ratio of the variance of the estimator of Ay when the optimal control

coefficient is not known to the the variance of the estimator when the

coefficient is known. So

4 1

N 'we
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var(ty(4)) var(Y(,))
= var(/Iy( 3 )) - var(F(3))

In the next section we give details on the derivation of the loss factor when

there are more than one control variable. The loss factor here is a special

case (Q= 1) and hence from equation (2.2.32)

LF = K-2 (2.1.25)

K-3

The loss factor acts as a multiplier to the minimum variance ratio (MVR)

where

MVR = var(3)) (2.1.26)
var(iF)

which represents the variance reduction achievable when the optimal control

coefficients are known. Multiplying the loss factor by the minimum variance

ratio allows for the loss in potential variance reduction due to the estimation

of 3. This product is the variance ratio (VR) and

VR = LF x MVR (2.1.27)

Later we will change the abbreviations to more standard Greek symbois.

04
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2.2 Univariate Simulation Response with Multiple Controls

The previous discussion can be extended to the case of multiple controls.

.. We summarize the development presented by Lavenberg and Welch (1981)

" ". for simulation output analysis based on independent replications, batch

means, and regenerative analysis.

2.2.1 Output Analysis Using Independent Replications or Batch

Means

During the course of making simulation runs, we observe the values of

the response of interest as well as the Q control variables. Separate

observations could occur as the result of independent replications of the

simulation model. These observations could also result from the use of

batching to form nearly independent observations. Let X be a Q xl vector of

controls, i.e., X = (X 1, . . . , XQ)' with known mean vector

"I" = (it . . . . . PQ)' and let R = (b,.• bQ) be a lxQ row vector of

constants, then the controlled estimator of Py becomes

Y(B) = Y - B(X - px)• (2.2.1)

The vector # which minimizes Var(Y(B)) is given by
.1

,3 = -xT x,V- V (2.2.2)

where Ecxx is the Q xQ covariance matrix of the controls and (Yx is the lxQ

vector of covariances between the response and the controls. See Anderson

04
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(1984), pg. 39, for a proof. The resulting minimum variance is

Var(Y (3)) =( 1 - X ;'X) var(Y), (2.2.3)

4..Y

where ,YX is the coefficient of multiple correlation between Y and X. The

'., authors next comment on the availability and choice of control variables.

They cite many application papers and distinguish between external and' "

concomitant controls.

The previous discussion hinged on the assumption that 3 is known. This,

of course, is not the case in practice (otherwise there would be little need to

simulate a process in the first place). We must estimate 3 and incorporate

the estimate into an effective statistical procedure to estimate k'y. To obtain

an unbiased estimator of pty, we make K independent replications of the

model or we organize the output from one run into K batches so that means
.p. ,

computed from each batch are approximately independent. If Xk is the
" 4'-

*vector of controls, observed on the kth replication or batch, then we compute

Yk(B) =Y -B(Xk -/k), k =1,.,K. (2.2.4)

-2_ A sensible estimator from the entire data set would be

"K
-(B) Yk(B). (2.2.5)

Kk

Now

var(Y(B))-- -- var(Y(B)) . (2.2.6)

04

-.~
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However, we still do not know the optimal value of B, and we must estimate

it. One estimate of 4 is

.9 = x , (2.2.7)

where -"xx and yx are the sample analogs of !xx and a7yx. We now

substitute .3 for B in (2.2.4) and (2.2.5) to produce the estimates Yk( 3 ) and

Y(,5). In general F(3) is not an unbiased estimator because 3 and X are not

in general independent. A simplfying assumption is that (Y, X) are jointly

distributed as multivariate normal random variables, see Cheng (1978). This

assumption may be justified by the use of sample means as controls (as well

as the estimator Y). In this case Y(3) is an unbiased estimator of 4y, and

using regression theory (discussed in greater detail later) we obtain an

estimator of var(Y(3)) such that

. ~~~var(]Y(. ) )  t- -,(2.8

where tKQ_1 is a t-distributed random variable with K-Q-1 degrees of

*, freedom. Q is the number of controls. Explicitly

var(Y(3)) = a, sll,

where 72 is given by (2.2.38) and s1l is described in (2.1.17). This leads to

the familiar 100(1-,))% confidence interval for py
rd

Y(P) ± tKQ-1(1-,/2)\/"711., (2.2.9)

.1

0I

4
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'he procedure used to construct the interval given in (2.2.9) is discussed in

greater detail in a subsequent section.

Since - is estimated by , one would expect that some loss in variance

reduction would be incurred. We define the loss factor to be the ratio of the

variance of the controlled estimator when the controls are unknown (hence

must be estimated) to the variance of the controlled estimator when the

controls are known. Using the notation of Venkatraman and Wilson (1986),

we let \1 denote the loss factor, we will show

2" K -2
K-1 -2(2.2.10)

K-Q -2

This factor is derived from the following considerations. If we do not use

controls then by direct estimation

var(Y) - (2.2.11)

where r is the variance of Y. Now if we know the control coefficients, then

from (2.2.3)

2

var( ( )) = Y(1pl x _ (2.2.12)
K

-- The ratio of (2.2.12) and (2.2.11) is called the minimum variance ratio (r<)

-ar( = (-) = 1-/y) , (2.2.13)
va r( Y) Y

° 
e,
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and we see that 100(1-ril) is the percentage variance reduction achievable

when B is known.

When we estimate 3 with 3 we are now interested in

var(Y(3))= tr(:?)(2.2.14)
var(Y)

"11 is called the variance ratio. We note

Svar(Y(3)) var(?(3)) (2.2.15)

var(Y(3)) var(f)

where XI is the loss factor due to the estimation of B.

At this point we have all the pieces save an expression for var(Y(3)).

The following details are from Lavenberg, Moeller, and Welch (1982). First

we remember (2.2.5)

(3) = Y - 3(X:-px). (2.2.16)

4-

To get var(Y(3)) the technique will be as follows. First we will write

var(Y(,)) as a linear combination of the Yk, then we will fix the controls,

compute the conditional variance, and finally, exploit the conditional

unbiasedness of Y(3) by computing the variance of Y(3) as the expected

value ( with respect to the controls) of the conditional variance.

Define M as a QxK matrix such that

4."

4..

N N.I..
be X . 0d- ?-

~~ir- OF-
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z11__X1 ... X1K-X1

M (2.2.17)
'p..

XQ 1 -XQ ... XQK-XQ

where x, is the value of the ith control on the jth replication or batch, also

x- is the 3ample mean of the ith control. From (2.2.2) we can write B as

= x = (Y-1K)M'(M'' (2.2.18)

0

where 1K is a column vector of Is. Now we can write

F(3) = b'Y , (2.2.19)

where

' -Li - (X -x')'(M% ')-1M (2.2.20)
K

Given Xk - xk for k=1, ... K, then b is a constant vector. Now we have

the conditional estimator in terms of the Yk. We compute

var(Y(3)I Xk=X for all k)-= b' (varY I X=xk for all k) b ,(2.2.21)

which reduces to

-he

o-C



• - (2.2.22)

'V %

-':':where o,, is the residual variance (as described in (2.2.34)). Now we find the

expected value of (2.2.22) with respect to the controls, and we get

var(Y(,j Ekx -or allT-ux'&M)-(C-x k).2.23

~K

:.'-:Now since

2X NM (2.2.24)

.K

- we have

K (2.2.25)

var(Y(,3)) =Ex - 1+ (-x)x (2.2.23)

We note that ( Anderson (1984))

T"" T 2 =- K(K-x)i' X--)x) (2.2.26)

'..

is Hotelling's T 2 statistic. Also Corollary 5.2.1 of Anderson (1984) gives

O02
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'. K~~([-x)"x (A-x)K-

K-1 Q -F KQ(2.2.27)

Kenney and Keeping (1951) give

E(FQKQ) -Q (2.2.28)
K-Q -2

=.

Now (2.2.25) becomes
S

b
.

-.. I- 11+ E(T2) - - 1+hE(FQKQ) (2.2.29)

which finally reduces to

var(-(3)) I+ _ (2.2.30)
K+K-Q -2J

Examination of (2.2.14) reveals that \X, the loss factor, is

var(Y(3)) (2.2.31)

' so from (2.2.12) and (2.2.30)

""" K-2•(3 (2.2.32)
'"-'" K-Q -2S..,

O..
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Now that we have a theory which lets us develop confidence intervals and

quantifies the loss incurred due to the estimation of 3, we need a statistically

valid procedure to construct the intervals. Lavenberg et al. develop

procedures based on the method of independent replications as well as the

regenerative method. Here we summarize only the method of independent

replications, and in a later section we discuss procedures for the regenerative

method.

Now, Y, X = (xI .... xQ)' are assumed to be jointly distributed as a

multivariate normal. Conditional on X = x, Y will be distributed as

univariate normal with

E(Y X x) it +3(X-x) (2.2.33)

where 3 is given by (2.2.2) ( the optimal control coefficient vector). The

variance is given by

var(Y X = x) -- ?r(1-P x) • (2.2.34)

So if we take the X as fixed we have the linear regression problem with

Y 1 X I I -- I z ' ... r -3U

+ (2.2.35)

.Y 1 XIK /lz. ... XQK--Ilz .

#3Q
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where x,, is as given in (2.2.17) and p., is the is the known mean of the 1th

control. It becomes apparent that we will be estimating Py with the least
.4.

squares estimate for the intercept of (2.2.35). We form our confidence

interval in the standard manner.

Let P y and 3 be the corresponding estimators of pty and 3 and let D

denote the Kx(Q±1) matrix on the right hand side of (2.2.35). From

regression theory the conditional distribution of 3 given D is

3. -- NQ 1 ( 3
, 7,(D'D)') . (2.2.36)

0

Hence

ji py -~ .(7y, <sl) (2.2.37)
n

where s is the upper left most corner of (D'D) - . Now all that is required is

an estimate of the common variance ' 2'. Such an estimate is given by

K K

Ed Yk - E (kY ±3 (Xk-p) 2

27, k'1?--(2.2.38)

K-Q -1

So given the observed values of the control variables a 100(1-,t)

confidence interval for uy is given by

4y ± tKQj(1-,/2)fVsIj o • (2.2.39)

o.l.
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2.2.2 Output Analysis Using the Regenerative Method

Lavenberg and Welch (1981) summarize a methodology for the

construction of confidence intervals based on the regenerative method. A

- -. more detailed development is found in Lavenberg, Moeller and Sauer (1979)

as well as in Iglehart and Lewis (1979).

: The regenerative method can be based on a single run of the model.

The method may be applied if there exists an increasing sequence of random

times that partition a run into independent and identically distributed cycles.

This sequence of regeneration times typically correspond to some

* ,distinguished state of the model. This state is such that, when it is entered,

the model starts afresh according to the same probabilistic mechanism that

drove the previous cycles. Lavenberg and Welch (1981) point out that, in

complex simulations, regeneration points may occur so infrequently as to

discourage the use of this method. The construction of confidence intervals

using the regenerative method is discussed in detail in Crane and Lemoine

(1977), Iglehart (1978) and Welch (1983).

We follow Iglehart and Lewis (1979) in their application of the

- regenerative method using control variables. Assume we observe in a run of

n cycles:
'.

(Yj, r,,X) < . <n

I

where 7 i is the length of the 1 th cycle, Y. is some response of interest and X

is a Qxl vector of controls. Many steady-state parameters of interest can be

expressed as the ratio of two expected values. Let r be such a variable. A

.% I R
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"controlled" point estimator of

ETYI

E[r]

is given by

(2.2.40)

where b is a lxQ row vector of control coefficients and F, 5 and F are the

4 sample means of Y, X and r. We note that controls are only being applied

to the numerator of the estimator. This type of estimator is called a top-
%'%

controlled estimator. Eakle (1982) developed a two-stage procedure which

first applied controls to the denominator of (2.2.40) to reduce the bias of r

and then applied another set of control variables to the numerator to reduce

the variance of the estimator. We discuss only top-controlled estimators.

To obtain an interval estimator for r, it can be shown that

.Vn x/g(; (b) r) D ,N(0, 1),
________n___+00

where - denotes convergence in distribution and
nz -c

2 
2(b) var(Yj - rrj - bXj). If we replace o(b) by an asymptotically

consistent estimator s(b) then the same convergence applies and we can

construct confidence intervals. However, we typically do not know the

optimal values of b. The optimal value of b is /0 and is given byiM

@..
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3 = p(Y - r, X) (2.2.41)

where VxX is the Q xQ covariance matrix of controls and p(Y - rr, X) is the

lxQ row vector of covariances between Y - rr and X. The vector 3

minimizes the variance of r. An estimate of 3 , . is obtained by using the

appropriate sample covariances in (2.2.41). The variance of r can be

estimated using

vMr) s=V

where

02

n1 x -

An asymptotically correct 100(1-a)% confidence interval is given by

r±

* Lavenberg, Moeller and Sauer (1979) describe a specialized set of ratio-type

.~ .. controls for regenerative estimators.

2.2.3 Analysis Techniques for Nonnormal Responses

Lavenberg, Moeller and Welch (1982) present a method of producing

confidence intervals based on the jackknife statistic, and they apply this

method in a Monte Carlo study of a broad class of closed queueing networks.

W, e-

.'. , o/q}
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Let Y(k)( 3 ) be the estimator computed (2.2.16) using the methodology of

Lavenberg and Velch (1981) when the kth observation has been deleted.

Compute the "pseudovalues"

Jk = K I(3) - (K-1)Y(k)( 3 ), 1 < k < K . (2.2.42)

Now calculate the jackknife statistic

-~ 1 K

= -i (3 ) , (2.2.43)

and the sample variance

( 1 ((3)-7(3)) (2.2.44)
K-1-

An asymptotically valid confidence interval is given by

J() ± tK-l(1-a)S(,3)/k (2.2.45)

We are referred to Arvensen (1969) for proof. These intervals hold under

mild regularity conditions given in Miller (1974).

.'
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2.2.4 Experimental Results

Lavenberg, Moeller and Welch (1982) apply the control-variate

confidence intervals (2.2.39) and (2.2.45) across a general class of closed

queueing networks. They develop three types of controls, service time

variables, flow variables, and work variables. The networks considered take

the following form. Consider a finite set (say of size S) of interconnected

service centers. These centers service D different types of customers. There

are a total of N customers of all types. Assume

1. Markovian Routing so that the next station visited only depends on the

* current location.

th th
2. The service times for the the 1' type of customer at the 2 service

station are drawn independently from identical populations with finite

mean and variance.

3. Service time sequences and sequences of centers visited are mutually

- independent.

The above networks form a general class of closed queueing networks.

Since the only random components of this system are derived from the

service time distributions and the multinomnial routing distributions, functions

of these variables can be used as internal controls.

* The authors perform a rather extensive study across many different

networks of the type described above. Three response variables were studied

separately: the long run average waiting time (by customer type), the long

run rate at which departures occur (by customer type), and the long run

average response time (by customer type). The following are important

4
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conclusions of their work:

1. Work variables exhibit the smallest minimum variance ratios. (The

authors expected this since these variables contain both information on

service time and flow).

2. The loss factor derived in Lavenberg and Welch (1978) appeared to

adjust the minimum variance ratio correctly.

3. The actual coverage probability for nominal 100(1-a)% S confidence

intervals did not suffer with the application of controls.

4. The regression method produced substantially smaller confidence

intervals than the jackknife method (with no appreciable degradation in

coverage).

5. The forward selection procedure (Draper and Smith (1981)) was used to

cope with the control variable selection problem.

Wilson and Pritsker (1984a,b) offer theoretical and experimental results

on what they call "standardized" concomitant variables. Assume we are

dealing with a Q-station queueing network. Define the input processes as

- (gl(k) :> 1)} , 1 < k< Q. Control variables will necessarily be functions

of these inputs. Consider a control of the form

a(k,t)

Xk(t) = (1/a(k,t)) (Uj(k)-pk) (2.2.46)

where a(k,t) number of service times that are started at station k during

the time period 'O,tl. Also 1 1 k is the known mean of the kth control. Wilson
-p

p.',
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(1982) showed that controls of the type given by (52) have asymptotic mean

and variance equal to zero. He states that this result also applies to the

"work" variables given by Lavenberg, Moeller, and Welch (1982). As a

consequence of this fact, the covariance matrix of the controls becomes

asymptotically singular. The authors offer remedy in the form of

standardized controls. Consider controls of the following form:

))12a (kt)Xk (t) = (a(k,t))-/ 2  E (Uj(k) - Pk)/rk . (2.2.47)
j-1

4.-

Here ok is the known standard deviation of the kth control. The vector of

standardized controls is shown to converge to a multivariate normal

distribution with zero mean vector and identity covariance matrix, as the run

length goes to infinity.

:- ..: One may standardize the "work" variables given in Lavenberg,

Moeller,and Welch (1982) by defining the controls as

f (k,t)
-'. Xk(t) = (V-f(kt)/wk(f (t)) E (Uj(k) - Pk)/'k , (2.2.48)

j-1

where Wk = relative frequency with which a customer visits station k and

f (k,t) = number of service times that are finished at station k during time

period (O,t).

K:. Wilson and Pritsker develop a theory of controlled replication analysis

which is based on the asymptotic multivariate normality assumption and

present selected simulation results. A more thorough experimental treatment

04
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is given in Wilson and Pritsker (1984b). The variance reductions observed in

both papers certainly offer compelling evidence that further research in these

areas may prove extremely fruitful. Experiments were carried out for

controlled replication and controlled regeneration analysis. The systems

studied were a class of closed and mixed queues representing machine-repair

V. systems. In the controlled replication experiments, variance reductions in the

range from 20% to 90% were observed with confidence interval reductions

ranging from 10% to 70%. After the effects of initialization bias were

removed, no significant loss in coverage was observed. In the controlled

regenerative experiments, variance reductions in the 30% to 90% range were

observed with confidence interval reductions of 20% to 65%. Some coverage

difficulties were noted (probably due to the inherent bias of the regenerative

estimator) but degradation seemed to stay within about 10% of nominal.

2.3 Univariate Simulation Metamodel with Multiple Controls

In all the papers reviewed to this point, we have been working with a

single underlying population and sampling from it. If we allow the population

to vary, say over the design points of an experimental design, then we are

working in the multipopulation domain. Nozari, Arnold and Pegden (1984)

discuss the application of control variables for multipopulation experiments.

These experiments typically involve some form of a general linear model.

This model represents a simplification of the simulation and, as such, it is

often called a metamodel. One object of multipopulation experiments is to

find a metamodel which can closely predict a response across the domain of

factor levels. Factor levels here correspond to to the design points mentioned

earlier. Another object of such experiments is to identify as closely as

04'S ~d*
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possible the values of the metamodel coefficients. Such information may tell

us the relative sensitivity of a response to a particular factor. We also may

"- glean whether or not certain factors should be included in the metamodel.

" This latter objective is the thrust of the research put forward by Nozari et

al.

Let Y = (Y ,... YK) be a Kxi vector of independent observations.

Each Y1 is obtained from an independent run of the model and each has

common variance -2. Assume

Y NK(Z3,e9 K)

where Z is a Kxm known matrix of rank m, 3 is a mxl vector of unknown

coefficients and IK is the KxK identity matrix. The factors or functions

thereof are embodied in Z, when the factor levels are not random the matrix

Z is commonly called the design matrix. Let X be a QxI vector of controls

for the th observation of Y. Assume X has a known mean vector. Without

loss of generality, we assume E(X)=O. Finally assume

I" +' NQ +1P 
(2.3.1)

where E(Y,) --z, and "gX and ix4 are covariance matrices of the response

and the controls and the controls with themselves, respectively. Let Z

denote the (Q+I) x (Q+I) covariance matrix in (2.3.1). Assuming the

metamodel has been correctly specified, Nozari et al. derive expressions for

04
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Scheffe' type simultaneous confidence intervals for both the case when E is

known and the case when '-- is unknown. In practice 1 is unknown and must

be estimated. In this case, let A be a (m-h)<m matrix of rank m-h. Let

G = (Z X) , X = (X 1, ... , XK),

where G is Kx(m+Q) of rank (m-+Q). Now for simultaneous confidence

intervals

Pr t'A3Ev'A 3cv [(m -h)Fn[G,K-,Q((:)v'4 ' A'v

-~~ . ± ~~m-hKmQ(cv'

..- ' "" 'v EJR rn-h = l-a,

where

3 cv = (1, 0) (G'G)-'G'Y,

and

2= I[Y - G(G'G) -GY11
2

K-m+Q

and F(q) is the alpha percentage point of a F distributed random variable

also (Im 0) is mx(m+Q) with I, the mxm identity matrix.

'V'.V , '"" * . . , *" '.""*' ?r e ," " "." "r" ,.:z ' '"." ".'"- -" "" ' " -. '' ".2"-



31

-. 5i Nozari et al. define efficiency as

= __ K-rn-1var(3) - var(3cv )  K-m--1 (Z'Z)-': '. 'K-m -Q -1'

where 3 are the estimated coefficients when controls are not used and

7- jY(- P ?x). In similar fashion to Lavenberg et al. (1982), the loss

factor here is

K-m-1

K-m-Q -1

4

2.4 Multiresponse Simulation with Multiple Controls

Rubinstein and Marcus (1985) extend the development of Lavenberg,

Moeller, and Welch (1982) to the estimation of a multivariate mean response

using multiple controls. Extending to p responses, we see that the controlled

estimator becomes

Y(B) = Y - B(X - Px) (2.4.1)

V'.

where Y is a pxl vector of responses, B is the pxq matrix of control

coefficients, and X is a qxl vector of controls with mean vector pL.

Rubinstein and Marcus demonstrate that det(cov(Y(B)) -- cov(Y(B))1, the

generalized variance of Y(B), is minimized by

- , (2.4.2)

L S.7

-S.
am
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where

-yx = E((Y-;,y)(X-;ix)') (2.4.3)

and

= E((X-x)(X-px)') (2.4.4)

The resulting minimum generalized variance is given by

covY(3)l = :YY- x -l i = y Y (1 - p2) , (2.4.5)

tt-

where L = rank(Eyx) and pi, = 1, ... P , are the canonical correlations

between Y and X that satisfy p > 
... _ P,•

The authors define efficiency of control variables as

-2 -Lvar(g(3)) I E (B)I
= var(Y) - . (2.4.6)

,

Porta Nova (1985) points out that the use of the term efficiency might not be

warranted here, because one seeks an increase in an efficiency measure,

whereas we seek to decrease 62 . In any case, 62 measures the relationship

between Y and X. One can see by examination of (2.4.5) that the larger the

canonical correlations, the greater the reduction in the generalized variance.

r.: - '' ' ,%-." - .,,"'- :? : -. ..
VL 
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Now given

z X (2.4.7)

we take a random sample of k observations

iIX, t 1, .,K. (2.4.8)

The authors consider two cases

1. The matrix 3 is known.

2. The matrix 3 is unknown and must be estimated. Case (1) can be used

to derive the multiresponse analogue q2' of the minimum variance ratio

r, (see equation (2.2.13)), while case (2) is used to derive the

multiresponse analogue X2 of the loss factor X1 (see equation (2.2.10)).

Both then are to be brought together to form what the authors call

efficiency and Venkatraman and Wilson (1986) call the variance ratio

(q2)'

Examination of (2.4.5) and (2.4.6) shows that the minimum vax:ance

ratio is given by

2 2

)= (1 -( P,), 2.4.9)

where v' and p are as in (2..5). Rubinstein and Marcus point out that r12

f.W

04
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can be measured by the ratio of the squared volume Vj of the confidence

ellipsoid formed about the estimate of ,y using control variables to the

squared volume V of the ellipsoid formed by direct simulation. Specifically,

(2.4.7) implies that

K(-p)'4(Y-p)- ,(2.4.10)

where \: is a chi-squared random variable with p degrees of freedom.

- Hence we can form a 10(1-ci)% confidence ellipsoid for 4y from

* PrK(~~Ly)Y4Y~,) y 1 )=-t, (2.4.11)

where

- 1 (2.4.12)

,,:...

The volume of this ellipsoid is given by

VI p' py 1 1 (' 1 0 /)' (2.4.13)

where

C (p 2-,,P 2 /F(P /2).

We can also form an ellipsoid based on the controlled estimator from

04 / " K / (..3
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Pr(K(Y-tY)' (1 ,)(-p) -- p -- 1-(A. (2.4.14)

%P

The volume of this ellipsoid is

= P-C (P) [ EY( 1) / 2 (' '  " )p' /2 (2.4.15)

• '""We note that the squared ratio of (2.4.13) to (2.4.15) produces

2 v2 - (2.4.16)
. vE1r

which verifies (2.4.9).

In practice Ez (the covariance matrix for Z given in (2.4.7)) is unknown

and it must be estimated. Let Sz denote the sample covariance matrix

SYY SYX
Sz = Sxx (2.4.17)

where, for example,

Syx 1 K (..8
-.-.s =K- ,§ (Yj-Y)(X,-5)', (2.4.18)

'"-1

where Y is given by (66) and X is constructed analogously. Now we estimate

3 by 3 =SyxS and form the K controlled responses as

,1<
*-= Yj(3) = Y,- (X,-tx), '1 j _ K. (2.4.19)

o5/
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Under our assumption of multivariate normality an unbiased estimator of py

is

,-"Y(V) = Yj(3) = Y-3(X-,tx) • (2.4.20)

We can form a 100(1-c)% confidence interval from the relationship (Rao
-" (1967))

Pr{()-L)ZX(()A ) y

(d'd)[(K-Q-1)p/(K-Q-p )]Fp,K-Qp (1-e) } 1-,

where

d'= 1'K/K (5C-px)'(G'G)-IG ' ,

where G is defined in (2.4.25) and 1K is a K dimensional column vector of

ones. Also we have

K-1iXY
,. -lx - K-Q -1 S y s x x

Rubinstein and Marcus define efficiency of control variables as

E{K J'IxI(d'd)P}

-- s

E (1/IK)P ISYY~ I

4
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this is the ratio of the expected generalized sample variance of Y(3) to the

expected generalized variance of Y. They prove that

l = Ci(K,Q,p)C 2(K,Q,p)1H (1-p,)
t =1

where L' rank(Eyx) and

C1 (KQ~p)= H[(K-Q -i )(K-1)/(K-Q -1)(K-1) .
CI(g,o,p ) = ]

1-1

and

C2 (,Q~) =+ (PI Q(9+2) ... (Q +2(j-1)).'": C2(K, Q ,p) =1+ E '

Ai (K-Q-2) ... (K-Q-21)

we see immediately that the loss factor for this measure of efficiency is

C1 (K,Q,p) C 2(K,Q,p).

;.* .'g

Venkatraman and Wilson derive a more natural extension of the loss

factor of Lavenberg, Moeller, and Welch (1982) by simply calculating the

"efficiency" or variance ratio as

q 2 7 2 2 , (2.4.21)

where '72 is the variance ratio given by

.4%

. . . - . P S
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:.: var(:-'(3)) _ K-2 o
2 -) K-2[ (l-p2), (2.4.22)

var(7Y) K-Q -2

ri is the minimum variance ratio given by

var(Y(35))-2
12 - - (l-pj, (2.4.23)" , var(Y ) =

and X2 is the loss factor given by

X2 = var(Yz(3)) - K-2 " (2.4.24)
var((3)) K-Q -2

,".4

To calculate X2 we need an expression for var(Y(Bfh)). One way to

calculate this is to write :Z(3) as a linear combination of the uncontrolled

responses and then calculate the covariance matrix of this vector. This

procedure is an extended variant of the procedure used in Lavenberg,

Moeller, and Welch (1982).

JW, Let G be defined as

:::.(x 1-k)'1

G -(2.4.25)

,.-.

- (xK -X)'

7-*o
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where X.,, 1 < i < K is a Q xl column vector of observed controls and 5C is

the Q x vector of the sample control means.

A alogous to equations (2.2.18), (2.2.19), and (2.2.20) we can write

Y(3) = - B(X-px) (Y1,...,YK)H, (2.4.26)

where (Yi,....YK) is the matrix of observed uncontrolled responses and H is

defined as

H 1K - G(G'G)-'(X--4x) (2.4.27)

where 1 K is a K dimensional column vector of ones. The authors show that

V3) is an unbiased estimator of py.

var( Y(,)) is calculated via the law of total probability for expectations.

First, we calculate the conditional covariance of Y(3) given the observed

controls, then we take the expectation of this quantity across the controls.

This double expectation is the correct quantity since the unconditional and

conditional expectations of V(3) are the same.

After both expectations are taken we get

K-2
var((3)) K(K-Q-2) (2.4.28)

where

i NY x - - (2.4.29)

r .
.'oU
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Now

co(Y()) = - (2.4.30)
K

so the loss factor '2 is

"' ]P

Icov f(3)_ K-2 (2.4.31)
-covf(-:)l K-Q-2

r2 is given by (2.4.23); hence the generalized variance ratio q2 is given by

4P K-

72 = K-Q-2 J1- (1-P2) " (2.4.32)

Obviously we require K-Q -2 > 0.

Venkatraman and Wilson provide guidance for limiting the number of

controls. They state that if A is a user specified upper limit on the loss X2,

then at most

Q [(K-2)(1--1/p)1

controls should be applied.

'5 - *5 .5 .v'-* 5 . 10
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2.5 Multiresponse Simulation Metamodel with Multiple Controls

Porta Nova (1985) extends the development of Nozari, Arnold and

Pegden (1984) to the case of multiresponse metamodels with multiple

controls.

The model employed is as follows

Y = Z3 + X_ + R

where Y is a Kxp matrix consisting of K p-dimensional observations, Z is a

Kxm design matrix, 3 is a mxp matrix of unknown parameters, X is a KxQ

matrix consisting of K Q-dimensional vectors of controls, i. is a Qxp matrix

of unknown control coefficients and R is a Kxp matrix of residuals.

Porta Nova provides point estimators for 3 and .

." (' I- I-X(X'PX)-,X'p lY

and

- (X'PX)-X'PY

where

P I-Z(Z'Z)-'Z'.

A 100(1-,t)'C confidence ellipsoid for vec 3 (vec 3 is a column vector

Op.

.1 C
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obtained by concatenating the columns of 3) is derived from

vec (3 - 3 )'( Z BB') - vec (3 - 3) IX -= T (K-m-Q)

where T 2(K-m-Q) is Hotelling's T 2 with K-m-Q degrees of freedom,

here

-a...B (Z'Zy 1IZ' i X(X'px)-'X'P

and

Ey!x = R'R/(K-m-Q)

where

R Y [Z3 +xs_

and 0 is the Kronecker product. The Kronecker product of the mxn matrix

A with the pxq matrix B is the mp xnq matrix

AAIIB . A B

-. ,I. .

AmiB Amn B

A 100(1-a)% confidence ellipsoid about vec 3 is formed from

@4
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Pr K-m-QrP+ Tr (K-m-Q) < Fmp,K-mQ-mp+(1-a)V 1-

Porta Nova generalizes the minimum variance ratio as

t 11 -P

he also provides a loss factor of

,'" -" )X3 --
K-rn-Q -11 9

where L, rankFyx and pi are the canonical correlations between Y and X.

2.6 Selection of Regression Models

Typically a practitioner is confronted with multiple candidates for

controls. It is possible (in view of the loss factor) that if he elected to use all

the candidates, he might actually induce variance into his estimator.

Therefore, a control variate selection orocedure that finds the "best" subset

of controls is desirable. We have seen that the principal technique employed

to exploit control variates is linear regression. In our application, control

variates are used as predictors in a linear regression on some response of

interest. The statistical literature is replete with papers that deal with the

selection of predictor variables in the regression context. However, relatively

little has been written on the selection of controls. In this section we review

control variate selection techniques as well as the more general literature on

4
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:, the selection of predictor variables in linear regression.

2.6.1 Review of Control Variate Selection Techniques

Lavenberg, Moeller and Welch (1981) applied a restricted variant of

"forward selection" regression (Draper and Smith (1981), Chap. 6) to selecting

a "best" set of controls. Nozari, Arnold and Pegden (1984) developed

variants of the "all regressions" and "forward selection" procedures. These

variants were tailor-made for the selection of controls in the situation where

the objective was the estimation of a univariate simulation metamodel with

multiple controls. Porta Nova (1985) and Venkatraman and Wilson (1986)

* 'offer advice on the number of controls to be used but do not discuss how to

select these controls.

2.6.2 Review of Variable Selection Techniques

There are several good survey articles written on the variable (predictor)

selection problem. Draper and Smith (1981), Thompson (1978) and Hocking

(1976) provide detailed surveys of the variable selection problem itself, while

Hocking (1983) offers a succinct overview of the general topic of linear

regression. Siotani, Hayakawa and Fujikoshi (1985) provide some

multivariate extensions of selected methods.

To organize the discussion we will classify the selection techniques

according to model and objective. Model will refer to either multiple linear

A' regression (univariate response) or multivariate linear regression (multivariate

response). The objective of a model will be classified as one of the following:

prediction, description or control. Aitkin (1977) makes the distinction

Al

Oq °
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between description and prediction. \\e draw attention to these objectives

only to underscore our objective, control.

2.6.2.1 Multiple Linear Regression Model

Basic Model. The multiple linear regression model takes on the

following form

y, sre + re p o ei < K

where y, is the Zth independent observed

1X(Q +1) row vector of predictors, 3 is a (Q +1)xl column vector of unknown

parameters ( with a 1 in the first column) and E, is the jth residual. We

assume that E(E,) =0 and var(E1 ) =C , 1 < i <K. We note that

E'y = X3

and
a'.'

variy = 7,

if we can take X as fixed. This is never the case when we employ control

variates. We must be careful to distinguish between the case when X is fixed

and the case when X is a random matrix. Following Thompson (1978), we

impose the following condition for X random. Assume y, X = xI, xQ are

jointly distributed as a (Q-1)-dimensional normal distribution with unknown

mean vector and covariance matrix. The conditional expectation of y given

% %.,

, f-.bJ*d. .4 ' a -
Oa -,



46

X=x is

E(y X = x) =X

var(y X = x) =

where 3 and 2 can be expressed in terms of the mean vector and covariance

matrix (see Anderson (1984), Chap. 2). Now conditionally on X = x, y is

normally distributed with mean and variance as given above. Finally,

*A conditioned on X = x, the model is

y " X3+6, (2.6.1)

where X is lx(Q +1), 3 is (Q+1)xl and E() = 0 with var(E) o2. We will

* see that certain expectations can be computed over X in the case of random

predictors that lead to criteria for variable selection.

S".2. It turns out that the estimates used for 3 and o2 are the same for either.t'. .

model, however; the distributions of the estimators differ. If we array all the

K observations we have

where Y is Kx, X is Kx(Q+I), 3 is (Q+I)xl and 6 is Kxl. The least

squares solution for 3 is

3=(XX) xtY:.4.

= * *
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An unbiased estimator of for both methods is given as

- 1 (Y - x3)Y - x.3)
i '  K-O -1

Selection of Variables

Given we have Q candidates for predictors, we wish to select a subset of

predictors that is in some sense "best". Using the notation of Aitkin (1974),

we assume that the first p variables are selected and the last Q-p are

eliminated. The subset model is

Y = x X- x3 2 + ,

* •where

x =(xl,x,),

and

3 (231,33).

Here 30 is included in X1 so X1 is Kx(p +1). If the last Q-p variables are not

.- included in the model we take 32 = 0.
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The methods we survey are typically of the following form. A criterion

is chosen that reflects the intended use of Ahe regression model. Subsets are

evaluated according to this criterion and the "best" subset is chosen as the

solution. Most taxonomies (Draper and Smith (1981), Thompson (1978),

Hocking (1976)) are dominated by three approaches: 1) All possible

regressions, 2) best k subset regressions and 3) sequential procedures.

The all regressions approach entails a complete enumeration of all 2 Q-1

combinations of predictors, each evaluated according to a criterion. Once

the criterion has been calculated for all subsets, the information is arrayed

and a subjective choice is made based on the criterion values and, perhaps,

O auxiliary information. Clearly, this is a computation-intensive method. This

method was not a tractable procedure until the advent of modern high-speed

computers.

Best k subset regressions and sequential procedures have been developed

in an effort to avoid the examination of all possible regression subsets.

Draper and Smith (1981) cite the branch and bound algorithm given by

Furnival and Wilson (1974) that computes only a small fraction of the

possible regressions and yields the "best k subsets (k is user specified).

Sequential procedures are more economical than the all regressions approach

.n that they try to find the "best" regression of a certain number of variables.

' There is no guarantee that these methods will find the "best regression", in

fact, different sequential procedures often yield different solutions.

The all possible regressions and best k subsets procedures use a specified

,*.-. selection criterion. There is nothing from preventing us from applying these

criteria in a sequential fashion. However, we will only discuss sequential

V V-s
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procedures that are based on a sort of partial F-test. Our discussion of

sequential procedures will concentrate on 1) Forward Selection, 2) Backwards

Elimination and 3) Stepwise Regression. First we discuss the following five

popular selection criteria: 1) the S criterion, 2) Akaike's Information

Criterion (AIC), 3) R 2 , 4) Ra' and 5) Mallow's Cp criterion. Next we discuss

the three sequential procedures. We will end our discussion of variable

selection techniques for the multiple linear regression model with a summary

of some other methods: 1) Ridge regression, 2) Principal Components

Regression, 3) Latent Root Regression, 4) Press and 5) Inferential techniques

due to Aitken and McCabe.

Selection Criteria.

The SP Criterion. The first selection criterion we discuss is the SP

criterion. Thompson (1978) recommends this selection criterion as preferable

if the predictor variables and response can be taken to represent a (Q+I)-

dimensional normal distribution. This criterion seeks to minimize the

expected mean square error of prediction. Following Thompson, mean square

error of prediction is given by

WSEP = Y (Y y P )29

where y, yp are respectively the observed and predicted values of the

response that correspond to some subset of size p (p Q) of predictors. It can

be shown that

4,
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)2 (7 (+ T2),

:." E ( -,T -

K

where 1¥ is the residual variance of the p-variable equation and T 2 is a

Hotelling's T 2 statistic that is a function of the regression sample and the p

predictors. If we take the expectation of MSEP across all regression samples

and predictors sets for the p variables we get

P. - P . l K -1 p _ "K I
K' K K- -2

This is estimated by

,- SSEP IK (K -- )

E - K(K-p) I+K+ -p2

where SSEp is the sum of squares due to error from the p variable regression.

* *-. After some algebra and recognition that K is fixed for a particular

experiment, Ep is simplified to

S-E SSEp
(K-p)(K-p -2)

Lindley (1967) offers a Bayesian version of this criterion.

Akaike's Information Criterion (AC). Akaike (1973) proposed a

criterion of the following form

... 01
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A.Cq = -2log( f (y;x,,4) )+2q

where f (y;x,) is the p.d.f. (likelihood) function of y evaluated at 0, 0 are

the maximum likelihood estimates of the q unknown parameters of the subset

• model. Akaike derived this criterion from information theoretic

"-. -considerations. This criterion does not enjoy widespread acceptance as a

selection criterion. Schwarz (1978) offers a Bayesian version of AIC.

The Coefficient of Multiple Determination R 2 The coefficient of

multiple determination R 2 is defined (for a subset of size p) as

RSSE

SSTO

where SSTO is the total sum of squares for y. The quantity SSTO is

constant for all possible regressions and SSEP is monotonically decreasing in

*1 p ( a useful fact exploited by Furnival and Wilson (1974)), hence, we do not

seek, necessarily, to find the maximum R2. Here we are looking for the point

where adding additional predictors is not worthwhile because of a small

relative change in R2 . This method is clearly subjective.

The Adjusted Coefficient of Determination R2. The adjusted

*. coefficient of determination R 2 is defined as

R>1fJ_ SSE,
0K- SSE
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This criterion takes into account the subset size p and penalizes candidate

predictors whose addition does not adequately reduce SSEp. Neter,

Wasserman and Kutner (1983) suggest graphical procedures for both R 2 and

R 2

Mallows' CP Criterion. Mallows (1973) suggests a criterion based on

minimizing MSEP in the case X = X 1 , ... I XQ are fixed. Here we will assume

that the "true" model contains all Q predictors. We seek to find a subset

model (although biased due to misspecification, see Hocking (1976)) that

provides a similar MSEP to the Q variable model and is nearly unbiased. It

can be shown that

MSEP(yi) bias(yi) 2 + var(y,).

If we total the mean square error for all K fitted values and divide by 09, the

true error variance, we get

FP 2 .. [E( K>)-.E(yj) +~var(Y9i)]

a "standardized" total square error as a criterion. It can be shown that a

good estimator of F is C where

SSEp
P! 2

and

.-:-:
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\Vhen there is no bias in the 0 predictor model, E(Cp) z_ p. If we plot CP

vs. p, models with substantial bias wil' ,-id to fall significantly above the

line C. = p. The strategy is to look for subsets with low bias and small Cp.

Thompson shows C is closely related to R and R . She points out that

the CP procedure tends to select a larger set of variables than R 2

p.

* , Sequential Procedures

In this section we will discuss three sequential variable selection

techniques: 1) Forward Selection, 2) Backwards Selection and 3) Stepwise

*, Regression. All these techniques are based on the "extra sum of squares"

principle as related through the following theorem given in Thompson (1978).

Theorem. Given the linear model

4,, Y = x3 + E,

where Y is Kxl , X is KxQ, 3 is Q x1 with e a Kxl vector or residuals such

that E(E) 0 and var(E) = &1IK. Then 3 p1 = .. =3Q = 0 implies that

Fx S IQ P -p, ,-Q
AI SEQ ~ Q K

where "SSQ -P =. SR SSR, and ,S,?Q is the sum of squares due to

J,.



regression from all Q predictors.

We note that SSQ-p is the extra sum of squares due to the Q-p extra

variables in the model. The strategy of all three procedures in this section

will involve successive partial F-tests that test the contribution to total sum

of squares. These tests decide whether new variables enter or old variables

leave the model.

Forward Selection. In the forward selection procedure we start with

no variables in the model. The algorithm proceeds as follows:

1. Compute the sample partial correlation coefficient (w.r.t y ) for all the

predictors not in the model.

2. Choose as the entering candidate that predictor with the highest partial

correlation with the response.

3. Perform a F-test based on a model of order equal to the current number

of predictors in the model plus one for the entering variable.

4. If the F statistid is significant continue with step 1; otherwise terminate

the procedure.

Backwards Selection. In the backward selection procedure we start

with all Q predictors in the model. The algorithm proceeds as follows:

1. Treating each predictor as the last to enter, compute

ALSEQ



- -~ 55

for each 1 th variable not yet deleted.

2. Choose the minimum F, as the candidate to leave the model.

3. Compare the candidate's partial F to a critical F.

4. If the partial F is nonsignificant we delete the candidate from the model

and continue with step 1; otherwise we terminate the procedure.

Stepwise Regression. In the stepwise regression technique we extend

the forward selection technique to allow for the deletion of variables at each

step. The algorithm proceeds as follows:

*1. Proceed with steps 1-4 of the Forward Selection technique.

2. If a variable is included at step 4 of the Forward Selection technique

then calculate partial F statistics for all the variables currently in the

model.

3. If a partial F is below the critical value, delete this variable; go to step 1

in either case.

-- A. As we mentioned earlier there is no guarantee that these methods will

.js; arrive at the same ( or "best" for that matter) solution. There is some

evidence that backwards elimination is superior to forward selection (Mantel

(1970)). Draper and Smith (1981) prefer the stepwise procedure.

Other Techniques

Ridge Regression. The technique of ridge regression was developed to

counter the effects of multicollinearity. %lulticollinearity can arise when some
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subset of the predic rvariables are highly correlated. In the linear model

,given in (2.6.1), these high correlations can cause the matrix X'X to be nearly

nonsingular. Rather than use the standard least squares estimators for 3, we

-. introduce the biased "ridge" estimator due to Hoer) and Kennard (1970):

R= (X'X +i cIK>'1X'Y, 0 < c < :C, (2.6.2)

where c is an arbitrary constant used to perturb the diagonal of the X'X

matrix and thereby, hopefully, eliminate the "Ill-conditioning" of the X

matrix.

0 In practice a graphical aid called a ridge trace is employed to help find a

* good value of c. The ridge trace is a graph of the estimated coefficients

(using (2.6.2)) vs. values of c (typically 0 < c < 1). The ridge trace is

examined for a value of c where the estimated coefficients stabilize. This

device can also be used as a variable selection tool by identifying those

predictors with 1) unstable ridge traces and 2) coefficients close to zero.

Draper and Smith (1981) are careful to point out that this technique is not

usually used for variable selection. Thompson (1978) objects to to this

method on two grounds: 1) the method is arbitrary in that it lacks a specific

criterion and has no stopping rule and 2) the relative magnitudes of the

predictor variables are ignored.

Principal Components Regression. In principal components

regression the approach is to break the rows of the X matrix into its

principal components (we discuss the principal components technique in more

detail in a later section) and retain only those components that explain the

greatest portion of the "variance" in X. The technique can help to remove

%r%%
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the problem of multicollinearity (by reduction of the dimension of X) but

suffers from forcing the investigator to work with predictors that are linear

compounds of the original predictors. These linear compounds may be

difficult to interpret.

Latent Root Regression. This method represents an attempt to

improve upon the principal components method. In latent root regression we

augment the "correlation" matrix of X (used to extract the components in

principal components regression) with Y. Now we extract the latent roots

(eigenvalues) and corresponding latent vectors (eigenvectors). Next, we

array the eigenvalues and eigenvectors in tabular form. We look for pairs of

eigenvalues and that coefficient of the associated eigenvector that

corresponds to Y that are small. Webster (1974) provides guidelines for

smallness. If the smallness criterion is met, the eigenvector(s) in question is

(are) candidates for deletion from the model. Next, we estimate the

- -:parameters for the subset model, back-transform into the original variables

and compare to least square estimates. It is important to remember that the

new estimates are biased. We can perform candidate examination in a

method similar to backwards elimination (details in Webster). Draper and

Smith do not recommend this method to the majority of practitioners due to

its inherent bias and complexity.

PRESS. Prediction Sum of Squares (PRESS) is a hybrid method

proposed by Allen (1971). It is hybrid in the sense that it combines all

possible regressions and residual error into a psuedo-jackknife procedure.

For each subset of size p, we delete one observation at a time and use the

remaining observations to predict the deleted response. At each deletion we

compute the difference between the observed response and the prediction.

.z . . .. .
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This quantity is called the predictive discrepancy. Once through the data, we

sum the squares of the predictive discrepancies and proceed to the next size

of subset. When all the subsets have been exhausted, we array the

information and choose a model with a low sum of squares and subset size.

Draper and Smith (1981) point out that, although the method helps detect

influential data points, there is no set stopping rule and the method is

comput ation-intensive.

Inferential Methods. Aitkin (1974) points out that application of

sequential procedures (forward selection, backward elimination, and stepwise

regression) suffers from a serious drawback. The Type I family error rate for

the sequences of dependent F-tests is unknown. Aitkin offers a simultaneous

test procedure that controls the family error rate in the subset selection

problem. If a partition of X = (X 1 X 2 ) ( X is Kxpl, X 2 is KYp 2 and

Pi + P2 = Q+1 ) is prespecified then it is well known that if

= X1 ,11 + X232,

with the same assumptions as in section 2.6.2.1, then a likelihood ratio test

for 32 = 0 is based on

(R 2 -R R 2,VP

(1R 2-Rx)K-Q-1

where Rx, is the squared multiple correlation of N with the predictors X1. F

has a noncentral F distribution and a test can be constructed for = 0 by

finding the appropriate critical point of the null distribution. Aitken finds a

@-
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simultaneous test for all partitions X, by noting

( r,, (Rx - Rx:)2  (2..3)"""" ~U(X,) = p2F = , 263

'A and defining,

U =maxx, U(XI)}.

\Ve have the simultaneous test for all partitions if we do not reject a
0'

.' particular partition when

U (X1 ) < CK,Q

where CKQ is the 100a o point of the null distribution of U. Examination of

-' (2.6.3) shows the maximum of U(XI) occurs when X1 consists only of the first

column of X, that is., the column of ones. In this case

""' ',(1 -- R)I(K-Q -1)

U/Q is noncentral F and the simultaneous test that does not reject the

hypothesis 32 = 0 for an arbitrary partition if

Rx -Ri,
(1 - R )/I-Q -< QFQKQ().

-_

.- °-"
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*,--,- Aitkin calls subsets not rejected. ft - adequate.

In the case where the regression equation is to be used for description

rather than prediction, he oflers simultaneous testing procedures for the cases

of X fixed and random. He calls subset models, that are not rejected by this

procedure, MSPE (Mean Squared Pre2diction Error)-adequate. Let E0 be

defined as the MSPE for the full model when X is fixed. Let E1 be defined as

the MSPE for the full model when X and y are jointly distributed as a

multivariate normal distribution. The simultaneous procedures test the

hypothesis H 0 : Ei - Ei= 0 vs. HI: E i - Ei < 0 (i=0,1,2 , Aiktin includes

the case i=1 where X is taken to be distributed uniformly over ;, ) where

*- Ei is MSPE for a subset model. The approach is to classify a subset as

MSPE-adequate if the MSPE for the subset is not significantly larger than

* the MSPE of the complete model. The test statistic for H0 : E0 - E = 0 is

" '2 Xt" X I I S - 1 X ,, 1

222.

where 32 are the least squares estimates (in the full model) of 2,

X. X2 -X - S 2 1S1 1  - X1), S 12 is the matrix of sample covariances

between elements of X, and X2 , S 22 = S 22 - S2 IS1_S 1 2 and ;2 is an

estimate of the residual error. The simultaneous test which does not reject

the hypothesis H0 for an arbitrary partition if

FO' < QFJ K-Q -i ( '),

hemre F _QK ( - is the 10) - point of a noncentral F with Q and K-Q-1

"' . e- 100 In, o.f'a.. .n....--.' - - -- .-t..-,--* . "-.- . .



61

degrees of freedom and noncentrality parameter of 1.

The test statistic for lo: E,, - E., = 0 is

= (I? - Ri)

l the simultaneous test that does not reject the hypothesis H0 for an arbitrary

partition if

.p ',Ki2

where pK2-) is the does% point of the distribution of the squared

multiple correlation coefficient based on P2 and K-pl-1 degrees of freedom

when the population squared multiple correlation is p2/(K-2).

McCabe (1978) proposes a framework for variable selection called (-

acceptability. Basically, a subset is considered -i-acceptable if the parameter

estimates for the reduced model fall into the 100(1-a,)% confidence region

formed by the full model. We look for subset models that are "close" to the

full model. Given the linear model of (2.6.1) it is well known that a

*'- 100(1-)% confidence region for 3 is given by (see Johnson and Wichern

(1982), pg 304)

S, = b: D(b) < s2( Q-1)F K K_ 1(1--o

4%2

@4 1"

..............€...-*.4 . . . . . .
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where D(b) = (Js - b)'(X'X)( ', - b). Here are the least squares

estimates from the full model and s2 is the estimate of residual variance

2 
= SSE(3,:)). \Ve note D(b) is the squared distance of any estimator b

from the least squares estimator 1',, in the units provided by X'X. Therefore

values of b for which

D(b) < d,,,

(where d,, = s2(Q +1)FQ,1,KQjl(1-,)) are a - acceptable. The a-

acceptable subsets form a collection. If one of the subset models is the true

model, McCabe provides a selection rule that guarantees that the probability

that the correct model is included in the collection is greater than 1-o. The

rule is to include all subsets for which

SSE(3 3 ) 0+1
I+ <1+FQ,KQ1(1-a),

SSE(3 1 3)--

where 33 are the coefficients in the subset model. This rule is derived from

1) the fact that D('33 )= SSE(3,) - SSE(,31 ) and 2) for any 3= 3, (the

true model is the subset model), Pr,(3 S,) > 1 - a. McCabe notes that

Aitkin's R 2 -adequacy selection rule can be written as

SSE(3 3 ) 1 + FQ _(1-a),.:-SSE(.,,) -- ,, - 1

and concluiies the collect!ons of subsets obtained using R 2 -adequacy are not

larger than those sil -ets ob'ained i;sing i-acceptabilitv.
,Sit

,, '" ."-"w.- " : , "" : -" '" " ---,-''' -. ''''' ' . -" ' , " '"" -" ' '." " '. '" "'"- '" .' " '' i.?
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2.6.2.2 Multivariate Linear Regression Model

Basic Model. The multivariate linear regression model takes on the

following form

Yi= X-- 3+ E, < i < K

where Yj is the ith independent observed response vector of dimension m, X,
is the ith observed lx(Q+1) row vector of predictors (with a 1 in the first

column), ,3 is a (Q +1)xm column vector of unknown parameters and 6, is the

i th lxm vector of residuals. We assume that E(E2 ) 0 and cov(62 )

1 < i <K. We note that

E[Y] = X3

and

varY,

-' if we can take X as fixed. As in the multiple regression case, we must be

careful to distinguish between the case when X is fixed and the case when X

is a random matrix. We can use conditioning arguments to show that we

may estimate the parameters of the multivariate linear regression model

using the same formulae for both random and fixed predictors. If we array

all the K observations we have

Y =X3 +

2 . - 4' %e

, .. ..... . . . . . . . . . . . . . . . .,
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where Y is Kxm, X is Kx(Q+1), . is (Q+l)xm and e is Kxm. The least

squares solution for J is

I=(X'X>-'XY,
-N

and an unbiased estimator of 1" for both methods is given as

(Y - ,)( - X3)(..)

K-Q-1

see Anderson (1984), theorem 8.2.1, pg. 289.

Selection of Variables

Relatively little has been written concerning the selection of predictor

variables in the multivariate linear model context. Many papers have been

written about variable selection in the closely related discriminant analysis

problem; Seber (1984) provides a review.

Siotani, Hayakawa and Fujikoshi (1985) offer multivariate extensions to

C and AIC. They also show how the forward selection technique can be

extended to the multivariate case. Let RSSP be the mxrn matrix of residual

sums of squares and cross-products,

RSS, (Y - XI3)'(Y - X ).

o.1
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NSiotani et al. generalize the CP criterion to m responses as

Cmn = tr[E -' RSSp' + 2mp - Kin,

where Y is as given in (2.6.4). They generalize AIC as

RSS
AJC m - K-log- + 2 mp.

K

To extend the forward selection technique, Siotani et al. suggest a

,generalization of the F-test using the Wilks A statistic. Let

=RSSPJ

.4 I RSSP

2"t.

in this case p-1 variables have been selected and the p variable is being

considered as a candidate for entry. If the pth variable affords a significant

reduction in generalized residual variance then it will enter the model.

" . Testing for nonsignificant reduction in generalized residual variance is

equivalent to testing H0 : /O 0. Under H0 ,

:5 K- -- m 1 - AP

i nFm,K-p-rm

so once again we perform F-tests on candidates for entry. If the candidate

enters, we choose the next candidate by finding that predictor that, along

with the p variables currently in the model, minimizes RSSp

04-"
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McKay (1977) extends Aitkin's (1974) R 2 -adequacy procedure to the

multiresponse case. He explores the regressions between predictors and

subsets of responses. This is an interesting approach, in that it allows one to

think in terms of candidate responses as well as candidate predictors.

McKay proposes several procedures, the most intuitive being a likelihood

ratio-based simultaneous testing procedure. In this procedure selection is

, based on the squared canonical correlations between response and predictor

subsets. This methodology, as well as those procedures due to Aitkin, are

applications of the simultaneous test procedures offered by Gabriel (1969).

,- McKay reasons that the amount of information about the variation in a

* set of responses provided by a set of predictors is reflected in their squared

canonical correlations. He shows that any subset of predictors can contain

the same amount of information as the full set if and only if the slope

coefficients of the deleted variables are zero. Let Y, X be jointly distributed

as

Y t~xM Y " Y ' x

further partition X' = (X'f X'g), Y = (Y',, Y'.), where f Ug = s

s = 1,...,m and vUw = u , u = 1,...,Q . This partitioning is arbitrary in

the sense that we allow any pair of subsets to be represented. McKay's

strategy is to apply one of Gabriel's simultaneous testing procedures to

hypotheses of the form WVS: 3VS = 0 and of the form ,vgf =0, where wvg.f

refers to a hypothesis in which the 3 matrix has already had those columns
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correspont,~i' parh m ieo,.i out. To get a simultaneous test with

predetermi~it i'pe I ,amdv t,rrmr rate, we test all such hypotheses versus

the same critical valie. T,e cr it ira value arises from the "overall"

hypothesis, that .s that there does not exist a multivariate linear regression

between Y and X. A likeihood ratio-based simultaneous testing procedure is

based on statistics of the following form,

1 -U
U

When the hypothesis is ',

4
.:.: s,", - S,, " .S.' 1

where S,, for instance, is the sample covariance matrix of the v responses.

When the hypothesis is wgf

- , - svs slssv I
g . S ISf

We reject ow when U,,7f > Wm.Q.K-Q-1, where W:QKQ1 is the

percentage point of the distribution of a random variable distributed as

IC

IG + HI'

where G is distributed as a Vishart distribution with K-Q-1 degrees of

"A
S"

I

!.
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freedom, H is distributed as a Wishart distribution with Q degrees of freedom

and G arid H are independent. McKay defines -:-adequate subsets of

predictors (Xkf) for the subset of responses (Xv) as those

Xvf:Wgf <WmQKQ-1

a'I-

-. 6.



CHAPTER 3

CONTROL VARIATE SELECTION CRITERIA

In this chapter we derive control variate selection criteria for two cases.

First, we derive a criterion for the case when the covariance matrix of the

controls is estimated. Next, we develop a new estimator that directly

* , incorporates the use of a known covariance matrix for the controls. Finally,

we present a selection criterion based on the new estimator.

3.1 A Selection Criterion When the Covariance Matrix of' the

Controls is Estimated

In this section we derive a criterion for use in the selection of control

variates when the object is the immediate construction of confidence regions

* . .about the mean vector of responses. We demonstrate that this criterion acts

as a multivariate extension of the univariate selection criterion, S.

% Our objective is the immediate construction of controlled confidence

-, regions. We use the word "immediate" to mean that we use only the data at

hand, we do not make additional replications. It seems reasonable to pick

that subset of controls which yields a confidence region of minimum expected

volume. However, for mathematical efficacy, it is more convenient to consider

minimizing the expected squared volume of the confidence region.

044
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First, we will consider the case of a single response and show how the

the appropriate criterion is a modified form of the SP criterion. In the section

following, we extend the criterion to multiple responses.

3.1.1 Univariate Response

In one dimension, the squared volume of the confidence region reduces to

the squared width of the usual controlled confidence interval. Let Wg

correspond to the optimal width of a confidence interval constructed from

iJ<_Q controls with a signifcance level (-. We seek to find that subset of size

j such that we minimize the expected squared length of the confidence

0 interval: in symbols

rin E (l)j (3.1.1.1)

Now

(W))- 4tK 1 (1--a/2)t2{ Sll (3.1.1.2)

as developed in (2.2.39). We wish to compute

!::-}min i 4t/__ 2 (1-a/2)E 2S l si (3.1.1.3)

but

E 52 js IJ -- var(YG3)), (3.1.1.4)

.4.
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by the arguments of (2.2.33) to (2.2.39)). Now, equation (2.2.30) gives

^ ," K -2[ 3  i )- - - -

var(F(3)) = K K-J-2 (3.1.1.5)

If we estimate 0r, by

-..? SS.E*
K-j-1 (3.1.1.6)

then some algebra and recognition of those terms that are constant across all

subsets yields a selection rule of

in.t _ _ (l--2) SSE(Mn K 1(1 (K-j-1)(K-j-2)'(31.7

but

SSE, s

(K-j-1)(K-j -2) =(3.1.1.8

S- (actually Sp is S, but we use p for the dimensionality of Y). The selection

rule is

M. rini, t _j_l 1  a1 ) .

We note that if K >> j then the criterion reduces to S.

4. ,A

"6



O* 72

3.1.2 Multivariate Response

To extend this procedure to p responses, we seek the subset which yields

the minimum expected squared volume of the confidence region. Rao (1967)

gives, under the multivariate normal assumption, the 100(1-.,)% confidence

ellipsoid for uy,

Pr (<(3)-py)'Zfx( (3)-iy) (d'd)CoFP,KQP(1-a-) =

(3.1.2.1)

where

C O  [(K-Q-1)p/(K-Q-p)]

and

= 1K/K -(X-Px)'(G'GY-G', (3.1.2.2)

where G is defined in (2.4.25) and 1K is a K-dimensional column vector of

ones. Also we have

"":" ,'1 - s - S xx ) (3.1.2.3)K-Q -1

Let (V) 2 denote the squared volume of the confidence region constructed

with jKQ controls at significance level c_. We seek to compute

minj E(V) 2 . (3.1.2.4)

-3%
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Let p- now, it can be shown that the volume of Rao's
K---p

ellipsoid is given by

J. " - "

-(FP). (3.1.2.5.- (V (v 2  2 p-C ( -Y I X(d'd) rj I Fp,K _,._ (1 --,) 1P, (..2 )

I %YIX-* -

where C 2(p) is given by (2.4.13). Rubinstein and Marcus (1985), pg. 675,

calculate the expected value of -1y x(d'd) as

E!XI 03, (3.2.1.6)

where

C3 = -(K-- )K I + E I K-j-2m (3..2.7)

for 0 < K-j-2p. So

E (VJ)j- p 2 C 2 (p) Zy x C 3 rj (Fp,K.1 .p(1-r)], (3.1.2.8)

!-
'.-.

and p is fixed for all subsets, hence we seek

min Iy~xC3K-j-1
min ZYIX 03 K- -P I (Fp,K-jp (1-Y) (3.1.2.9)

but

= -- %

"42% "." " . " . " ; , " . . .' % , {S . ,€ ,. . , % . , j "..... . .
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"V." j = - V ,\'-1V - \,1YX---Y -YY. K-Y X - ---YY ---YX-XX----A- yy

YE 11(1 - pr), (3.1.2.10)

where v= rank (Eyx.). Now, jZyyI is not a function of j; and noting this

and replacing the canonical correlations with estimates we get a criterion of

Kj1 1-ca) 1P '[(I - p 2). (3.1.2.11)C 3.K-j-p j j(

4.P

" 3.2 A Selection Criterion When the Covariance Matrix of the

Controls is Known

Situations arise in discrete event simulation where the covariance matrix

of control variates is either known a priori or can be computed with relative

ease. Several authors have suggested such controls for the class of closed

queueing networks studied by Lavenberg et al. (1982). Wilson and Pritsker

(198'a,b) and Venkatraman (1983) propose standardized control variables for

these systems. In addition to having an asymptotically known mean, the

controls offered by Wilson and Pritsker also have an asymptotically known

covariance matrix. Venkatraman's controls have a mean vector known

exactly with a covariance matrix that is also known asymptotically. In

Chapter 4 of this research, we offer a new class of controls for which both the
.%

mean vector and covariance matrix are known asymptotically. To emphasize

S.I

@4
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the potential diversity of situations where the covariance matrix is known.

we cite the so-called "path" controls offered by Venkatraman and Wilson

(1985). These controls arise in the simulation of stochastic activity networks.

.q . ~ We believe that there is a large class of simulated systems for which such

controls can be developed.

In this section we develop a controlled estimator Y(^) that directly

incorporates the known covariance matrix of the controls. We derive its

various properties and develop a selection criterion based on this estimator.

3.2.1 The Estimator Y(',)

"* In Section 2.4 we introduced the estimator

Y p(3) = (3.2.1.1)

where 3 = SyXS-1. Here, as in Section 2.4, Y is a pxl vector of responses,

3 is the estimated pxQ matrix of control coefficients and X is a Qxl vector

of controls with mean vector kzx. In this section we will introduce the

:. estimator

(X-gx) (3.2.1.2)

"i'. .%

where

'- = :-X (3.2.1.3)

. . . . . . . . ..... . . . .. ..
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This estimator incorporates a known covariance matrix, --Xy, for the

controls.

Provided that the responses and controls are jointly normal, Y() is an

-" unbiased estimator for Fpy. To show this we write Y(^,) as a linear

*combination of the K observed responses. Let

(X 1 -X

-G .(3.2.1.4)

(XK -Y"

and define

1 K1K - (!1)-GZ -(X--x) . (3.2.1.5)

* .We observe

1 K'G =0, 1K'H = 1, [Y," YK G = (K-1)Syx , (3.2.1.6)

and so we write

Now, define Z = vec X = vec (XI,'', XK) so that Z is tl-e I.\

dimensional column vector formed by stacking the Q-dime:.

LV." { one upon another. Now, '.he condition \_ ".

0e-.

. . ._
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compactly expressed as Z = z. Also, define uz = vec (1K (&AX). We have

E [YVY)] = EX [Ey [ vec YHlI Z = z]1(3.2.1.8)

= EX [(fR®(Ip)Ey [ vec Y I Z =z]

Now, assuming joint normality of the responses and controls, we have

---- Ex [('®Ip) (1K 9U) + (IK EYx-xA)(Z - Az)

EX [(Igiuy) + (HiiOYX ) - )

= Ex [py + (f1'®2yXE)Z - (H'®ZYx 7&)(1K®lix)

EX [my + (EyxEjE~l~) - (1 (9xEyiFlx)]

= /y + EX(EyxYjOXH) - (EZyXE3i&X)

MyIt~ + r-yx 5XEX [XH] (-yXZTAX)
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my1 + F-XE fYC - (K-1)-'XGE,(5-x)] (EYxF-3&X)

and under the assumption of multivariate normality, we have

=EX [S".&rEx [(R-iix)]=

EX [Sx.Zi(R...x)] = 0 (3.2.1.9)

since SXX is independent of 5X in this case. Hence the estimator, Y('), is

unbiased. The covariance of Yi(,y) is given by

cov +Q 1 JY I [K+ Q+1 EYrE&Ezyv= K(K-1) K(K-1)

(3.2.1.10)

The derivation of (3.2.1.10) is Appendix 1. Algebraic manipulation of the

above reveals

coy -1~yi E2yy iI - 2 EYXY-&XY]
coy )-K(K-1) I K+Q-1

(3.2.1.11)

1 1q

* -,*I~('S
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hence the variance ratio is given by

* = det(cov(Y(y))) (3.2.1.12)
72- det(cov(Y))

= K -Q1I 1 . KQ-1 2~ (3.2.1.13)

where v = rank Eyx. Let p. be the smallest canonical correlation, then

'72 < KQ-- 1 K - . (3.2.1.14)
K-I Kq-Q -1

Now if v = p, a resonable condition corresponding to well-picked responses

and at least p well-picked controls, then the right hand side of (3.2.1.14) can

be shown to be less than 1 (see Appendix 2) if

P.> 1 2 (3.2.1.15)

We have shown that it is possible to achieve a reduction in the

generalized variance using ;rf6) as an estimator. However, for (,) to be of

practical significance we require it to reduce the generalized variance relative

to its competitor F(09). To contrast the estimators Y(y,) and Y(I), we form

the ratio

U2
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- det(cov(Y ))) K-1 r ( K+Q-1

,, . -.!- 7=det(cov(f( ))) K--2-- -[ (1- p; )

(3.2.1.16)

Using mathematical induction and assuming that v -p (see Appendix 3), we

can show

(KI Q -1)(K-Q -2) 1
2 > (g-1)(K-2) I 1/9* p> = 1<1

P* (K±Q -1)(K-Q -2) K-2 7

(K-1)(K-2) K+Q-1

(3.2.1.17)

i We have shown, subject to conditions on the canonical correlations, that

reduction in the generalized variance of the estimator is possible. The next

step is to create a 100(1-a)% confidence region based on Y(y).

We construct a 100(1-c)% confidence region based on the following

considerations. We assume

(4y) N(my, ) (3.2.1.18)

where I is given by (3.2.1.10). Let E be an estimator of E, further; assume
E. .

(n-Q)Z ~.. Wp(n -Q , Z) , (3.2.1.19)
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where Wp(n-Q , Z) is a random matrix distributed as Wishart with n-Q

degrees of freedom and expected matrix E; here n = K-1. Now if :;'Z) is

independent of E and we define

T= , (3.2.1.20)

we can show (see Muirhead (1982), Theorem 3.2.13, pg. 98)

TK 2  K-Q-p _ Fp,K-p-Q , (3.2.1.21)K-Q -1 p

0where Fp,K-p Q is a random variable distributed as a central F with p and

K-p-Q degrees of freedom respectively. We can form a confidence region

based on

,Pr { - -()-y) < CoFp,KQp(1- ) =-a,

(3.2.1.22)

where

C o = [(K-Q-1)p/(K-Q-p)]

.

-,.v%;r.*~P ~~
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3.2.2 A Selection Criterion

As in the previous section, our objective is the immediate construction of

controlled confidence regions. Again, we will seek that subset of controls

that yields a confidence region of minimum expected squared volume.

Expression (3.2.1.22) is used to construct the 100(1-a)% confidence ellipsoid

for py. Let (V,) 2 correspond to the optimal squared volume of the

confidence region constructed with j Q controls at significance level a.

We seek

minj E(Vg)2. (3.2.2.1)

Let = [P K_,.- r; now, it can be shown that the squared volume of

this ellipsoid is given by

(V') 2 = p- 2C 2 (p) Irj (FpK-j-p (1-a) (3.2.2.2)

where C(p) is given by (2.4.13). Assume (K-1-j)Ej Wp(K-1-j, E).
Here 'it depends on the subset of j controls. Using Theorem 3.2.15 of

Muirhead (1982), we calculate the expected value of ] I as

1I2 C (3.2.2.3)

where

P K-J-i

SI K-i-1

. .- I

q~
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for K-j-i > 0. So

E [(v)]- - C4 7j (FpK, . (1-c) i r (3.2.2.4)

and since p is fixed for all j, we seek

We do not know 2i so we estimate it as

K+j-1ix [ j+1 -y yI 3226
SK(K-1) J IX+LK(K-1) ix(322)

where

K--1IYX =K---I ( - SS: :Sx, j, (3.2.2.7)

and

y -- , Syy (3.2.2.8)

where Syy is defined in equation (2.4.17).
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CHAPTER 4

IMPLEMENTATION OF THE SELECTION CRITERIA

IN QUEUEING NETWORK SIMULATION

In this chapter we discuss the evaluation portion of the research. First,

we describe a class of closed queueing networks that were used as the

experimental vehicles of this research. Then, we describe an experimental

procedure in which a series of simulation metaexperiments were carried out

to evaluate the performance of the multivariate selection criteria. Here we

4' discuss the system responses investigated and the candidate controls. Next,

we discuss the the performance measures employed. Finally, we discuss the

methodology used to obtain the optimal subset of controls in each basic

experiment.

4' 4.1 Description of the Simulated Queueing Networks

We chose four different queueing systems as experimental vehicles.

4' These queueing systems were suggested by Lavenberg et al. (1982). These

systems are members of a broad class of closed queueing networks. There

are several major advantages to choosing such systems. The first major

advantage lies in the fact that these systems have been studied extensively

.J. and workable controls have been developed by several authors. Lavenberg et

al. (1982) have developed a set of control variables that, in the univariate
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Nresponse case, have produced significant variance reductions. Wilson and

Pritsker (1984a, b) show how to modify these controls to insure asymptotic

stability. Venkatraman (1983) offers a standardization scheme for one subset

of the controls of Lavenberg et al. Another advantage in using these

networks is that they are representative of a class of queueing systems which

are frequently analyzed in computer performance modeling. Finally, the two

simpler networks we employ have a steady-state behavior which can obtained

analytically. This information was of great value for validation.

As outlined in Lavenberg et al., the queueing systems considered take

the following form. Consider a finite set (say of size S) of interconnected

service centers. These centers service D different types of customers. There

are a total of N customers of all types. Assume

1. Markovian routing so that the next station visited only depends on the

current location.

2. The service times for the the jth type of customer at the ith service

station are drawn independently from a given distribution Fij(*) with

finite mean and variance.
*:.

3. Service time sequences and sequences of centers visited are mutually

." independent.

There are two basic types of networks to be considered in this general

setting. Figure 1 portrays the form of the first type of simulated network.

Service center 1 has N servers, where N is the total number of customers of

all types. We can think of this service center as a room filled with N

interactive computer terminals. The service centers labeled 2,', S are

04
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SERVICE SERVICE
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SERVICE
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Figure 1. Type I Network
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single server queues with the customers being served in order of arrival. We

can think of service center 2 as a central processing unit (CPU) with service

centers 3, ... , S as peripheral devices to be accessed by the CPU. The S by

S transition matrix that characterizes the flow of customers in the network

has the form

0 1 0 0 .. 0

p 1(d) 0 P2(d) P3(d) ... ps(d)

o 1 0 0 ... 0
o 1 0 0 ... 0

P~d 0 1 0 0 ... 0

o 1 0 0 0
o 1 0 0 ... 0
o 1 0 0 ... 0

where Pk(d) k = 1, ,S is the one step transition probability from service

center 2 to the remaining centers (for a customer of type d). In this type of

network we have made the implicit assumption that every customer that

requests service from the CPU is immediately granted his requisite memory

allocation. In real world interactive computing enviroments, customers often

must queue for memory at the CPU. This blocking effect due to memory

limitations of the CPU is modelled by the next type of network.

We refer to this second class of systems as networks with subnetwork

-~capacity constraints. The CPU and associated peripherals are the

subnetwork. A network of this type is portrayed in Figure 2. The dotted

line encloses the subnetwork. Service center 2 is now merely a queue for the

subnetwork with capacity N' < N customers. There is no service time

associated with service center 2.

.. . . . .

VF;.4~~~~. % ~ C c .' .% ,. ; * r - *,j %'.''
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Figure 2. Type 11 Network
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In this case the S by S transition matrix takes the form

0 1 0 0 ... 0

0 0 1 0 . .. 0

p 1(d) 0 0 P2(d) ... ps(d)

0 0 1 0 ... 0

P(d)= 0 0 1 0 ... 0

0 0 1 0 ... 0

0 0 1 0 ... 0

0 0 1 0 ... 0

0 0 1 0 ... 0

In our experiments we chose 4 networks from Lavenberg et al. (1982).

Two of the networks were of the first general type, i.e., no subnetwork

capacity constraints. The other two networks had subnetwork capacity

constraints. The networks are parameterized in the tables below.

Table 4.1 Parameters of Queueing Systems Used
in the Experimental Evaluation

NtokNSubnetwork S

No. No. customers Capacity Number of

N' Service Centers

1 25 25 4

2 15 15 4

3 25 5 7

4 25 10 7
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Table 4.2 Mean Service Times for the Queueing
Systems Used in the Experimental Evaluation

Network

No. Service Center Number

1 2 3 4 5 6 7

1 100 1 .694 6.25 - - -

2 100 1 2.78 25.0 - - -

3 100 - 1 2.78 2.78 25 25

4 100 - 1 2.78 2.78 25 25

0,

Table 4.3 Branching Probabilities for the Queueing
Systems Used in the Experimental Evaluation

Network Probability of Branching from Central Server

No. To Station j

1 2 3 4 5 6 7

1 .2 0 .72 .08 - - -

2 .2 0 .72 .08 - - -

3 .2 0 0 .36 .36 .04 .04

4 .2 0 0 .36 .36 .04 .04

I..,

V..

-U

O4
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We chose the first two networks because Lavenberg et al. presented detailed

results of their experiments using these two networks. Also, these two

simpler networks display a steady state behavior that can be obtained

analytically. Results for the networks 3 and 4 were presented in Lavenberg,

Moeller, and Welch (1979).

4.2 Layout of the Simulation Experiments
1%

In this section we discuss elements of the experimental layout. First, we

briefly describe the relationship of our basic experiment to an overall

metaexperiment. In the next section, we discuss the selected system

responses. Following that, we list the selected control variables. Finally, we

discuss the selected performance measures.

4.2.1. Composition of the Metaexperiments

A basic experiment consisted of a set number of independent replications

of the simulation model. We chose two replication levels, 20 and 40. Within

a basic experiment a selection procedure was employed to obtain the "best"

subset of controls. We discuss the selection procedure in a later section. An

overall metaexperiment was conducted for each network. This meta-

experiment consisted of 50 independent replications of the basic experiment.

Therefore, when the replication level of a basic experiment was 40, we ran

40x50 = 2000 independent replications of the basic experiment.

.:

@04
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4.2.2. Selected System Responses

We elected to look at a two dimensional response across all the models.

We were interested in the response vector R(t), Ucp(t)) where R(t) is the

mean response time for a system request accumulated up to simulated time t

and Ucp r(t) is the utilization of the CPU accumulated up to simulated time

t. These responses seem to make good sense from both a system and

customer viewpoint. The customer is most interested in the response time of

the system and the system adminstrator is probably most concerned with the

utilization on the CPU, since it is probably by far the most expensive

component of his system.

4.2.3. Selected Control Variables

We considered, as candidates, modifed versions of the control variables

proposed by Lavenberg et al. (1982), as well as as new control of our own

design. These control variables can be classified into three basic types: 1)

service time variables, 2) flow variables, and 3) work variables. All of these

variables are collected at each service center for each customer type. In the

form suggested by Lavenberg et al., service time variables are the sample

mean service times. Flow variables are the sample proportion of departures

from particular centers relative to the total number of departures from all

centers. Work variables are the product of the service time variables and the

flow variables.

Lavenberg et al. calculated the asymptotic means for these controls. In

.e€. their analysis, they assumed that the run lengths of their models were

sufficient to warrant the use of the asymptotic means. We chose to use

%-p A
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"standardized" forms of the service and work variables of Lavenberg et al.

We developed a standardized flow-type variable based on the multinomial

routing of each network. We used "standardized" controls in an effort to

avoid numerical difficulties that result from unit of measurement differences.

We considered, as candidates, service time variables of the type

proposed by Venkatraman (1983). For service center j and customer type d,

4 define

' ~~~j~ It)( (Ut)'' c~~
Xjd(t) (0 E (u,, I(d) - Uj,d)/Cj,d

-I

where: g(j, d; t) is the number of service times started at station j for

customer class d during the simulated interval (0, t] (here 0 marks the start

of the statistics collection period ); and UjA ' I is the I th service time

sampled at station j for customer class d, where E(Uj,d I )= jd and

var(Uj,d, ) - 7r,.

Venkatraman (1983) shows that

E[X(t)] 0 V t >0

where

X(t) -- [X 1(t), , Xq(t)I

a.s...c

. -:and since

oi
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~D

X(t) -D N(o, ci)

jD
where - signifies convergence in distribution and

t-c

ce= diag((i, ,

and

k= (Steady-state utilization of station k)/,Uk

(note that we have dropped the customer class distinction). Venkatraman

provides guidance for the computation of a k .

Among the candidate control variables are versions of the work variables

due to Lavenberg et al. that have been suitably "standardized" as proposed

by Wilson and Pritsker (1984a, b) (see equation 2.2.48). This class of

controls are attractive because the vector of q standardized work variables

converges to a q-variate normal distribution with a zero mean vector and

unit dispersion matrix:

X ( D J N(0, 1)

t4K

"*x °(1) --

"q-.
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4.2.4 Routing Control Variables

The moments of the flow variables proposed by Lavenberg et al. are in

general unknown. Hence, we were not able to standardize these variables. We

discarded these controls as candidates in favor of a standardized multinomial

control. We call these new controls, "routing variables".

All routing in the networks we considered is done from the CPU. Now

define an indicator variable on the event of the I th departure from the CPU

to station j

I if the I th departing customer goes to station j
U1 ( ) otherwise

Now, from the discussion of the simulated networks we have pj(*) as the

probabilty of transition from the CPU to station '. If N(t) is the total

number of transitions from the CPU up to time t then

N(t)
- U1 (j)IN(t) = n - B(n;pj(*))

l1-1

a binomial random variable on n trials with success probability p,(*). We

consider standardized controls of the form

(N(t) U1 ( j) -

XR~ _ -V N(t)(1 - Pj(*))P.(*) for j 1 , S if N(t) > 0
SxR(t0) - if N(t) = 0

Since E [XR(t) N(t)] =0 for all n and for all t, we see that X(t) has mean

4p
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zero not merely asymtotically but for all times t:

E[X -R(t)]=0 forallt >0;

moreover

1x( lim [R

var XRt) N(t) = n I=1 for n > 0 lt- var -1.

4The covariance matrix for the routing variables is given by the matrix

RR = t -c X(t),XR(t) N(t) where j and k reflect possible

V. routings from the CPU. The covariance matrix is calculated as

.

1when g=k N(t)>0

when j-k , N(t)>O:.'_ /(i -Pj( "11(1 Pk ( )

0 when N(t)=O

(4.2.4.1)

The derivation of (4.2..4.1) is given in Appendix 4.

"-
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Standardized routing variables share the same desirable asymptotic

properties as the standardized controls proposed by Wilson and Pritsker

(1984a, b). Let XR(t) x(t), ... , In Appendix 5 we show that

XR(t) D N(, -RR), (4.2.4.2)
n -+o

in a broad class of queueing networks that possess the regenerative property.

We require s=S-1. This requirement is explained in Appendix 5.

4.2.5 Selected Performance Measures

To assess the efficiency of using the "best" subset of controls, we
concentrated on two performance measures: (a) coverage and (b) volume

reduction. Coverage was computed, across a metaexperiment, as the actual

proportion of generated confidence ellipsoids that contain the true mean

vector. Volume reduction was computed, across a metaexperiment, as the

average percentage reduction in the volume of the confidence ellipsoid

generated with the "best" subset of controls relative to the volume of the

ellipsoid generated by direct simulation.

For experiment I , let

Volume of the confidence ellipsoid

V Igenerated with the best subset of

controls,

fVolume of the confidence ellipsoid
V1  -. Lgenerated by direct simulation,

%V.e
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1 if the controlled confidence ellipsoid
1 = 0contains the true mean vector

0 otherwise,

1 if the uncontrolled confidence ellipsoid
l15 = contains the true mean vector

0 otherwise,

Across the metaexperiment we compute

Vr- 1 50

-I.

501

P -VIP 1
501

4- so that the final performance measures are

Volume Reduction (%7) =100

66,.j- 5 ,.50p

0 4 
%~*-~ 

* ~.*--.S* JI * \ '

+.% az."
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Coverage Probabilty(%) d

(Direct Simulation) = X100

Coverage Probabilty(%)

(Best Subset of Controls) = 100

When Y(3) is used, the expression used for volume reduction can be

obtained from equations 34 and 35 of Rubinstein and Marcus (1985).

Specifically

1/2__ __ [ /__ _ _ _ __ _ _ 2 p /2
--y , (d'd)P 2 (K-Q-1)K(K-p) I p/ FK.Q -p(1- a )

-d I"'- (K-1)(K-Q -p) Fp.Kp (1-)

and ,vhen Y( ) is used, we have

- ~ ~ ~ I IKL ~ f)]/2 [KQi-)]/2
I d sy 1 1 I/2 (K-1)(K-Q-p ) Fp,K-p (1-a)  '

where all notation is as appears in Section 2.4. After some pilot

experimentation we decided to employ the standardized work variables of

Wilson -nd Pritsker (1984a, b), as well as the standardized routing variables

proposed above.

4.3 Optimal Subset Selection Methodology

Within each basic experiment, a set number of replications of the

simulation model were performed. Response and control variable data were

collected for each replication. After the data had been collected for the last

replication within the basic experiment, a control variable selection

methodology was applied against the data. This procedure computes the

multivariate selection criterion for all possible subsets of controls and finds

i.,
. . .
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the minimum. The subset corresponding to the minimum value of the

selection criterion is deemed "best" or "optimal". Given the optimal set of

controls, the coverage and confidence region volume reduction measures were

computed and tallied.

The selection procedure is initiated by the construction of a grand

* covariance matrix that includes the responses and the controls. Next, a

multivariate generalization of a binary search of the regression "tree", as

proposed by Furnival and Wilson (1974), is employed to examine all possible

subsets of controls. Finally, the procedure computes the performance

statistics.

As demonstrated in Sections 2.1 and 2.2, the control variate technique

can be viewed as a linear regression problem. In Section 2.1, we consider the

case where there is one response and one control. In this case, if we assume

joint normality for Y and X, then conditional on X=x, we have the classical

regression problem

Y = Di + 6 , (4.3.1.1)
4 .o

1/y
where Y (Y 1 , I , " YK) , , D is as in equation (2.1.17), K is the

number of replications, E'= (E,''', 6K) a vector of residuals such that

. , - IID N(O, 7,2), and 3 is as in equation (2.1.11).

Under the multinormal assumption, the least squares and maximium

"-, likelihood solution for -t is given by

= (D'D)-'D'Y.

.,%
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We note that the only remaining unknown in the model is the variance of the

residuals. An unbiased estimator is given by

(2 (Y - D )'(Y - D)
K-2

It is apparent that the computational overhead necessary to completely

estimate the model of equation (4.3.1.1) lies mostly in the inversion of D'D.

When we extend the model of equation (4.3.1.1) to the case of a

univariate response with multiple controls, as well as to the case of multiple

responses with multiple controls, we see that little changes from a

computational viewpoint. In particular, for the case of a univariate response

with multiple controls, the model becomes

Y = D,- + E , (4.3.1.2)

where Y = (Y 1, , Y/-) , = (py,-J, 3q), D is lescribed by

equation (2.2.35), K is the number of replications, 6' = ( .. . , 6K) is a

vector of residuals such that E - ID N(O, 7,2), 3i is as in equation (2.2.33).

Under the multinormal assumption, the least-squares and maximum

P likelihood estimates for a~ and 1,2 are respectively given by

S= _(D'D)-D'Y

2 (Y - D, )'(Y - D,)

- K-0-1

6%
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Seber (1977). Finally, in the case of multiple responses and multiple controls,

the model is

*1**

Y=DA+E, (4.3.1.3)

where y = (y(l), . . (P)) , and Y(J) represents K independent
-p

observations on variable '. Here A = (,((1), • • • ,y(P)) and

,P (pf), 3()l , 2))I, so that A is the matrix of regression (control)

coefficients. Moreover, D is as in equation (2.1.35), K is the number of

replications, and E = (6(1), ,(P)) where e(.) is the column vector of K

residuals for the j t h variable so that each row of E is - IID Np(0, Y-) By

2 similiar arguments (Seber (1984)), we estimate
2.'"Y

A - (D'D)-D'Y . (4.3.1.4)

(Y DA)'(Y - DA

K-Q -1

.~
For both the models given in equations (4.3.1.2) and (4.3.1.3), we car see that

the bulk of the computation involved in estimating model parameters lies in

the inversion of D'D. In the next section we discuss efficient Gaussian

elimination methods to accomplish this end.

.1 . . -. . . . " .-- '. . "p . . ....... - . N
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4.3.1 Matrix Methods

In this section we discuss methods used to invert matrices of the form

D'D, where D is KxQ and of column rank Q. These methods are based on

elementary row operations. Such methods are called Gaussian elimination

methods. We will discuss the Gauss-Jordan method, the sweep operator,

symmetric sweeping, and Gaussian elimination.

Following Kennedy and Gentle (1980), we enumerate the following

elementary row operations on a matrix:

1. Interchange two rows.

2. Multiply any row by a constant.

3. Add one row to another. To effect an elementary row operation, one

can perform the operation on the identity matrix and simply premultiply

this new matrix on a target matrix. These altered identity matrices are

often called elementary matrices. lethods based on these elementary

transformations are called Gaussian elimination methods.

Chvatal (1983) presents a clear exposition of Gaussian elimination

methods. He condenses the elementary operations needed to invert a matrix

into two basic matrices (a) the permutation matrix, and (b) the so-called eta

matrix. The permutation matrix is an elementary matrix that simply

interchanges two rows. The eta matrix is a succession of elementary matrices

that zero selected elements of a matrix.

The Gauss-Jordan method of matrix inversion is based on the following

observation. Let the matrix T be the product of successive multiplications of

0
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I.m

those elementary matrices which must be applied to a square matrix D'D

(where D is tNxO and of column rank Q) in order to reduce it to the identity

matrix. That is, if E, is the j- elementary matrix, then, if

T =EP .. El

we have

T(D'D) = IQ

.,- .

and

T(D'D)(D'D) - = IQ (D'D) - '

or

TIQ = (D'D)-

Now to implement this method, we merely augment D'D with IQ and

apply T to both. In the notation of Kennedy and Gentle (1980),

":[!i (D'D) IQ IQ Iq (D'D) - 1]

Beaton (19641) exploited the fact that for each column reduction of D'D

all the columns of the identity matrix remain in the transformed (augmented)

'-'p'0 ,.0
TV''4
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matrix. Essentially, he simply replaces the newly created identity column

with its counterpart in the right hand side or the augmented matrix. This

storage innovation allows for the inversion of a matrix in its own space. The

operations which accomplish this are called sweeps. Beaton (see Seber (1977),

pp. 351) offers the sweep operators. A matrix G is said to be swept on the

kth row and column if it has been transformed into a matrix G I iigijl such

that

kk
gkk

gik - g k k
gkk

-'" -" g,; = ( j -/k).gkk

= 9kk

Schatzoff et al. (1968), Seber (1977), and Kennedy and Gentle (1980)

discuss the properties of the sweep operator in varying detail. A useful

result, given in Kennedy and Gentle is the following. Let G be the

augmented matrix

' '.,',:d D'D D'y]

G Y'D Y'Y (4.3.1.5)

where D is KxQ (with column rank 0) and Y is ',p. Now, if G is swept on

the first Q row gnd columns, then Ihe resultant matrix G is

k %,

5.
-,' ,' ,5 ",.",-,- , """;5".,"', "-"- - . - . - . ", ,"""", .'""". . . - . . -.. ""''"'"'""''''''-.,4..' '',.--
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G (D'D)- (D'D)-'D'Y 1
[-Y'D(D'D)-' Y'Y - Y'D(D'D)_D'yJ (4.3.1.6)

In particular, if D and Y are "centered" (that is, if the sample mean of each

variable being subtracted from each obsevation), then

1%' 1
G' . (D'D) - 1  A'

k - Rss

where A is as given in equation (4.3.1.4) and RSS is the matrix of residual

sums and cross products.

The matrix G, is symmetric. The symmetry of G can be exploited by

working only on the upper triangle. This method is called the symmetric

sweep. It is due to Steifel (1963) and for each pivot on matrix G, we get the

matrix G such that

-1

g kk

9zk =ki = gi kgkk (ik)

gij 9Pg = ig2 + gikgki (i,j"#k)

Sweep and symmetric sweep operators produce both the regression (or

-.: control) coefficients and the RSS matrix. For some applications, such as our

problem, there is no need to calculate all the control coefficients for every

sweep. In these app'"ations, the primary interest is the RSS matrix. The

desired result can oe obtained by applying Gaussian elimination to the

matrix G, given in equation (4.3.1.5). Seber (1977, page 304) shows the

.:

-',
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desired result for the case when Y is lxK. The result for a Kxp matrix Y is

suggested by Kennedy and Gentle (1980, equation (7.21)) and is reproduced

here as equation (4.3.1.6). To prove that Gaussian elimination produces the

appropriate RSS matrix, one premultiplys the matrix G of (4.3.1.5) by the

matrixbr

T 
0Tt:::-y'D (D'D) -  IP

where T is the lower triangular, nonsingular matrix that reduces D'D to unit

lower diagonal. If D'D is nonsingular then the existence of T is assured, see

Seber (1977, Chapter 11).

4.3.2. Generation of All Possible Regressions

In order to implement the criteria obtained in Chapter 3, a methodology

is required to generate the needed regression information from each subset of

regressors. Several systematic procedures have been suggested. Garside

(1971), Schatzo[T et al. (1968), and Furnival (1971) offer methods based on a

binary coding for each subset of regressors. Furnival and Wilson (1974) offer

algorithms which produce all possible regressions in orders they call natural,

lexicographic, and familial. These orderings are based on the systematic

search of a structure called a regression tree.

As we have seen in the previous section, Gaussian elimination and/or

sweeps (henceforth, we refer to individual eliminations as "pivots") can

produce regression information for some subset of the regressors (controls).

We need to generate a sequence of pivots on carefully stored matrices, such

that every possible subset of controls is considered. Following Furnival and

II%
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Wilson (1974), we form a regression tree as follows (see Figure 3). At the

root of the tree is the original covariance matrix. At this point no variables

(regressors) have been allowed to pivot into the model. The notation 123

signifies that there are 3 candidate controls. Dark lines on the tree signify

pivots. For instance, the dark line emanating from the root signifies a pivot

on variable 1. Note that the resultant notation, after this pivot, is 23.1.

J. Integers after the dot signify those variables included in the model; the

variables appearing before the dot are not yet in the model. Dotted lines

represent the deletion of a variable from the model. For instance, the dotted

line emanating from the root signifies the deletion of variable 1. Note that

this deletion results in the model 23. At each node, we either pivot a variable

into the model or delete a variable from the model. These pivots and

* deletions are carried out until all possible subsets of models have been

considered. Furnival and Wilson point out that this tree can be traversed in

any "biologically" feasible order. That is, we require only that a father be

born before a son. If we search the tree horizontally from level to level, this

is the so-called natural order. Storage savings are possible if if we use the so

called lexicographic (dictionary-like) order. Furnival and Wilson also offer a

(a) binary ordering which amounts to a counting process in base two, and a

(b)familial ordering in which both horizontal and vertical elements are

combined. Table 4.4 shows the order of the regressions produced by the four

methods addressed above. Furnival and Wilson offer algorithms for each

ordering.



.1~ 123

23

3..L 3.2

.12.1.2 .3 .1 .232 .2 .3l

Figure 3. Regression Tree
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Table 4.4 Sequences of Regressions

*Natural Lexicographic Binary Familial

2 12 2 2

3 123 12 3

4 1234 3 4

12 124 13 12

13 13 23 13

14 134 123 23

0123 14 4 123

24 2 14 14

-. 34 23 24 24

123 234 124 24

124 24 34 124

134 3 134 134

234 34 234 234

1234 4 1234 1234

-P Of r r
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4.3.3. Multivariate Generalization of All Possible Regressions

We employed a binary search of the regression tree. This search is a

direct implemetation of the binary algorithm given by Furnival and Wilson

(197.1, page 504). The input matrix was the sample covariance matrix of

-. controls and responses. At each pivot we calculated the generalized residual

variance and computed the value of the selection criterion. \Ve employed a

variant of Gaussian elimination (also found in Furnival and Wilson) that

exploits the symmetry of the covariance matrix by operating only on the

tupper triangle. We chose Gaussian elimination over sweeping to save on

computation of the regression coefflcients. These coefficients are only needed

for the optimal subset.

J...

.

.i. -
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CHAPTER 5

EXPERIMENTAL RESULTS

In this chapter we discuss the experimental portion of the research. We

summarize the results of our simulation experiments and conclude the

chapter by discussing a few experimental excursions designed to examine the

underlying assumptions of our analysis.

5.1 Summary of Experimental Results

'.

As mentioned in Section 4.1, we experimented with two different types of

closed queueing networks. For purposes of discussion, we refer to the first

type of system (no blocking at the CPU) as a type I network and the second

type (blocking at the CPU) as a type II network. Models 1 and 2 (models 4

and 5 of Lavenberg, Moeller, and Welch (1978)) were type I models, while

models 3 and 4 (models 15 and 16 of Lavenberg et al.) were type II models.

All models were discrete-event simulations written in SLAM (Pritsker 1986)

and a FORTRAN listing of both types is given in Appendix 5.

One basic aim of this research is to provide a simulation practitioner

with a methodology whereby he can select the "best" subset of controls to

-..4-4-. 5
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use to in constructing a confidence region for the steady-state mean vector of

responses. The analysis program we developed to accomplish this end is

given in Appendix 7

* For type I networks, it is possible to obtain analytically ,the steady-state

expected values of the response vector (R(t ), Ucpu(t ) ].We used the

software package GAN-Q (Solberg (1980)) to calculate these values. Since it

is impossible to run our simulations to infinity, we settled for long run

lengths. For type I models, we chose a run length of 20,000 time units. For

* type II models, we chose a run length of 30,000 time units. We started the

collection of statistics after 2,000 time units in an effort to minimize the

effects of initialization bias. We chose the longer run length for type 11

* - models because of the presence of blocking at the CPU. When steady-state

- . expected values (pty) were not available, we used the grand mean vector of

* the 2,000 replications (Y(2,000)) as the population mean. We report our

- results relative to both 4Uy and (Y(2,000)). Table 5.1 summarizes this

information for all four models.

lop
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Table 5.1 Mean Responses for the Queueing Systems
Used in the Experimental Evaluation

Steady-State Mean Y(2,000)

Model R(t) UcPu(t) R(t) Ucpu(t)

1 36.13 .918 36.04 .9177

2 81.71 .413 81.14 .4128

3 * * 247.06 .3590

4 * * 85.92 .6625

The candidate controls chosen for the type I networks were the four

standardized work variables (collected at all stations) and the three

standardized routing variables. Note that the analysis program includes a

tolerance check on incoming variables. This check precludes multicollinearity

problems which would result if all three routing variables were included in

the model. We chose only seven of the available control variables as

candidates for the type II models. This was done to keep the analysis at a

comparable dimensionality across both types of networks. We chose as

candidates the standardized work variables for the CPU and the two busiest

disk drives; also we used four standardized routing variables (excluding only

routing to less frequented disk drives).

4E
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For each model we ran 2,000 independent replications. The first 1000

replications were used to yield 50 meta-experiments of replication size 20. All

2,000 replications were used to produce 50 metaexperiments of replication

size 40. We report (with respect to both /Uy and Y(2,000) ) estimated

coverage probabilities and estimated volume reductions for both estimators

(Y(3) and Y()). Nominal coverage was 90%. Tables 5.2 and 5.3

summarize our experiments.

Table 5.2 Performance of the Controlled Point
- and Confidence Region Estimators for K=20

Replications of the Selected Queueing Systems

Coverage Probability (%) Volume

Steady-state mean Y(2,000) Reduction (%)

Model Y(3) Y() Y(3) Y(C) Y(3) F(6,v)

1 78 80 86 86 73 45

2 28 64 78 80 83 52

3 * * 82 90 61 43

4 * * 83 84 46 34

'f

. . . . .. . . . . . . . . . . . . . . . . . . .
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Table 5.3 Performance of the Controlled Point
and Confidence Region Estimators for K=40

Replications of the Selected Queueing Systems

Coverage Probability (%) Volume

Steady-state mean Y(2,000) Reduction (%)

Model Y(3) Y Y(3) Y(Q) Y(3) ( )

1 58 76 84 88 76 61

2 0 36 80 94 86 69

3 * * 84 90 63 53

4 * * 88 86 47 41

We observe that in all cases Y(') covered the steady-state mean better than

Y(2). Further, Y(,) offered comparable if not superior, coverage relative to

Y(3) when Y(2,000) is taken as the target mean. This improvement in

reliability is probably due to the conservatism of Y(-,,) to Y(;3)as reflected in

the realized volume reductions.

-A
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5.2 Examination of the Assumptions Underlying the Application of'

Control Variables

Two major assumptions come into play as one applies the estimators

Y()and Y(j). Confidence interval procedures for both estimators are based

on the assumption of joint normality between the responses and the controls.

The confidence interval procedure based on Y(-,) assumes that the mean

vector and dispersion matrix of controls is known. In the case of the controls

we applied, these quantities are known only asymptotically. We also assumed

that the runs were of sufficient length that the response vector could be

assumed to be in steady-state.

We carried out three excursions from the primary analysis to gauge the

effects of the underlying assumptions. We hoped these experiments would

shed some light on the sensitivity of the procedures to the underlying

assumptions. First, we looked at the situation where the responses and

controls were distributed as jointly normal random variables with all means

and covariances known exactly. We calculated the sample covariance matrix

of responses and controls for 2,000 replications of model 2 (chosen

* arbitrarily). We took this covariance matrix to be the population covariance

matrix of responses and controls. Next, we generated 2,000 independent,

normally distributed random vectors based on this structure. We repeated

our basic analysis for replication sizes of 20 and 40. In this experiment the

means of the responses as well as the controls are known exactly. The

results are Table 5.4

@4
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Table 5.4 Performance of the Controlled Point and Confidence
Region Estimators when Multivariate Normality is Ensured

Coverage Volume

Probability (%) Reduction (%)

Replications Y(3) (, ) Y(3) Y(^)

20 89 93 81 50

40 92 94 85 69

We observe that under ideal conditions both estimators deliver nominal

coverage and Y(') is more conservative. We feel that the results above

validate Y() as a viable estimator.

Next, we wanted to see if we could determine whether it was the lack of

normality in the responses or insufficient run lengths which degraded

estimator perfromance in the actual simulations. To accomplish this end, we

applied normalizing transformations (Box, Hunter, and Hunter (1978), and

(Anderson and Mclean (1974)) in an effort to make the data appear more

normally distributed. We took the natural logarithm of the response times

and applied the transformation z = arcsin (/UcPu(t)) to the CPU

utilizations. The results are Table 5.5. Coverage is relative to the grand

average of the 2,000 transformed response vectors (Y,(2,000))

04.
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Table 5.5 Performance of the Controlled Point and Confidence
Region Estimators Under Normalizing Transformations

of Queueing Simulation Responses

Coverage Volume

Probability M% Reduction(%

Y (2,000)

Replications YO3)~) Y(30 i(Y)

20 84 85 82 51

40 74 90 86 70

Comparing Tables 5.3 and 5.4 to Table 5.5, we see that there seems to be an

indication that F(' ) is less sensitive to departures from normality than Y~)

Finally, we were interested in the effects of run length. We contrast the

performance measures at run lengths of 5,000 and 20,000 time units,

respectively. The results are Table 5.6. The replication level is 20.

W- -%%.
1.'42
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Table 5~.6Performance of the Controlled Point and Confidence
* Region Estimators for Queueing Simulations of Different Run Lengths

Coverage Probability (%/) Volume

Steady-state mean Y (2,000) Reduction (7c)

Run Length Y(3) Y(3 Y() Y) Yj

-~5000 18 33 90 92 57 39

30000 28 64 78 80 83 52

We observe that the increase in run length yields improvements in the

coverage of the steady-state mean vector for both estimators. We also

observe a degradation in coverage about F(2,000) when the run length is

%. increased. Volume reductions appear to be significantly larger for the long

runs.

% %
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 Overview

This research offers a solution to the general problem of optimal

selection of control variates. We offer solutions for two different cases of the

general problem: (a) when the covariance matrix of the controls is unknown,

and (b) when the covariance matrix of the controls is known and is

incorporated into point and confidence region estimators. For the second

case we introduce a new estimator that we represent by the symbol Y( ).

Under the assumption that the responses and the controls are jointly normal,

we have established the unbiasness of this new estimator, and we have

derived its dispersion matrix. We have implemented a selection algorithm

which locates the optimal subset of controls. The algorithm is based on

criteria we derive for the two cases listed above. We have introduced a new

class of controls which we call "routing variables". We derived the

asymptotic distribution of these controls as well as their asymptotic mean

and variance. Finally, we have investigated the performance of the selection

algorithm and we have contrasted the estimators Y(3) and Y( ,).

.k .....

.1

dl



122

6.2 Conclusions

We conclude that the selection algorithm delivers a workable set of

2controls that yield minimum expected squared volume. Under ideal

conditions, confidence region procedures based on both estimators deliver

nominal coverage and significant volume reduction. The estimator ~~

appears to be more conservative. The conservatism of Y(-,) greatly enhances

its reliability when the underlying assumptions are violated.

Routing variables prove to be a significant new class of controls

variables, in that they entered every model fitted during the course of the

analysis. They are easy to implement and should be considered as candidate

controls in any simulation that contains probabilistic branching.

6.3 Recommendations

There are several avenues of potential future research that present

themselves.

1. In the case where the covariance matrix of the controls is known, we

offer an unbiased estimate of the dispersion matrix of Y;( ) which we

call EZ. The theoretical properties of E have yet to be established. It

would also be of interest to investigate other estimators of Z

2. We employed a "all-regressions" approach to find the optimal subset of

controls. Generalization of a search scheme that avoids total

enumeration of the subsets would be useful. A multivariate

generalization of the branch and bound algorithm suggested by Furnival

and Wilson (1974) is immediately suggested.
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3. Dr. Bruce Schmeiser has suggested that the response variables be scaled

prior to analysis to reflect the preferences of whoever uses the model to

.4 4* make a decision. Research aimed at incorporating the preference

structure and risk adversion of the decision maker would be of interest.

. .
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Appendix 1: Derivation of Equation (3.2.1.10)

Now, define Z = vec X = vec (X 1 , •-K) so that Z is the (KQ)

dimensional column vector formed by stacking the K one upon another.

- Now, the condition = Xf can be more compactly expressed as Z= z.

Also, define pz - vec (1K>p'1X). Write

II[I. . K f, ~Y =Yf (A. 1. 1)

and

vec Y-) = vec (Y-H) = (H'XI.) vec Y (A.1.2)

Now

cov[ vec Yf EX [coy vec Yf Z z] -4 coy [E [vec Yf Z zi

(A. 1. 3)

Examining the first term of the right hand side of equation (A.1.3)

EX cov[ vec Y Z = z]] E + [coy [(fI' vec = z

(A.1.4),.-

@4-



129

=Ex [(fH'®Ip)COV[ vec Y I z = i,:q (A. 1.5)

- .=Ex [(H'®Ilp)(IK VY )H I)] (A. 1. 6)

EX [H®Z )H'~) (A. 1. 7)

=EX [(kfio~yI X)] V= Z XEX[H] (A. 1.8)

Now

H' K ±(-)(-ix'~~1kix] (A. 1. 9)

EK['1 + E [tr(K-1'(YC-,u"'' - EZ'(5-U 1 (A. 1.10)

by the properties of the trace (tr). Now

E t(K -1)(-x) SyZj(Xx) (A. 1. 11)

. . . . . . .
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(K - 1)t r [E [(R-jx)'YiS v 1X-Px) 1]= (A.1. .12)

(K-1Y-'tr [E [(R-,u)(R-,x)'EiaSx.Zi]] = (A. 1. 13)

E. I E A.1 7

iri

(K[ I ] K(K-1)Q . (.

soxt aleramhow that (Aeco8d (encofe Aight) becomses oA13

.

.. ,.

5.-S.

54/*KK-1)-t [I ] -- =KK-1))I .(A.l.17)

cov [E vec Yi z cov [Eh[(c(AI)vec Ybecz]]

(A.1.18),.'-"K(K -1 ',.x"
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Equation (3.2.18) allows

coy (i p) vec YI z ] =I (A. 1. 19)

co [(fr®Ip) L + (IKOFZYXT-jk)(Z-

(A.1.20)

Now, as a direct result of equation (3.2.1.9)

coy vec (Zx'~Hj(A. 1. 21)

YZYXZ224(cov [vec X)ZI IE XYI (A.1.22)

Now

cov( vec XHi) =cov(Xii) =(A. 1. 23)

E(XH(XH)') -E(XR)E(XR)' (A.1.24)

E(XHH'X') -E(XH)E(XH)'. (A. 1. 25)
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First, we examine the first term on the right hand side of equation (A.1.25).

Now
(HH') = K-2 K'- 1-i (X-x' G'(K--l)- -

- (K--1)-GV&(X-px)K- 1 ' + (K-1)-2 G j- (-x)(X--ix)'EZAG'

(A.1.26)

We note that (G is as given in equation (3.2.1.45)

XG = (X - 1K')a = (K-1)SXy (A.1.27)

Hence

X(HH')X' = K- 2XlKIK'X' -- -- x)'ZIkSXy'

)CXE- s -1(R-'x) + sxY 1(T-1x)(Y-tx)'Es-'

(A.1.28)

Looking at the first term in the right hand side of equation (A.1.28) we have

-E(K2X1K1KX') K 2E(x ) - K- 1 Exy + uxjxf (A.1.29)

Examination of the second term in the right hand side of (A.1.28) reveals

[YqYC x)'EZ JS~X&] E [Yq5k-X)']ZiE [ S.' (A. 1. 30)

,v3

.4

.4'

}, 
A.W~-~i~~*'.~~
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[Tdx! - x Qv' -v (A. 1. 31)

E [5jC - A~x/Itx' K= V (A.1.33)

* Now we examine the fourth term on the right hand side of (A.1.28), we

observe as a consequence of equation (3.2.1.9) that

E[ ~XX)(~X'iS& = coy[s i1 (5t'x)1 =

4 (A. 1.34)

E [cov [%xrEi1r(tpx) S. + coy [E S~XXZ.a(R-Ax) ISXX =

(A. 1. 35)

E [coy [sx.czA.(R-iix) I S.= Sm] E [sXiiicov [XXs

(A. 1. 36)

E[S, -K'EXEiiSxr] = E[K1lS&Z2(lS~r] (A. 1. 37)

Let W - WQ(K-1 , IQ where WQ(K-1 ,IQ) Is a random matrix
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distributed as Wishart with K-1 degrees of freedom and expected matrix IQ.

Now, S'c - WQ(K-1,K---v') , so S. (2-W)E'W . Now

continuing from equation (A.1.37)

,-Exx['S = E[K1(K1-2 W =

(A.1.38)

E[.(K 1)2 WWE1 ,'(K- _,[w])

4(A. 1.39)

Now we compute E [1W] with the following arguments. Let Q = W, first

consider the E[Q when i = j.

E[Qii] = E[ Wiv = (A.1.40)

E E iv =(A.1.41)

S.

S.

Using equation (4), page 90 of Muirhead (1982) (and some algebra), we get

- var [Will I + E [Wi = (K -1)(K +Q). (A.1.42)
V-1

I

-A,,'% % , -% -,, . ", ,,. .- ,% 4, . .",". '... . . . . - . . . . - - - .. . . . . . : .
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Now, consider when i 3

E [Q] = E[ZWIVW j = (A.1.43)

1, Fj,
EI'Wij 1Wj] E [WjWj]+ VIE W W (A. 1. 44)

.4 Once again we apply equation (4), page 90 of Muirhead (1982) (and some
"*4-"5. 

algebra) we get

co-[ ] + y[] + coy [+ E c] 0'" C V W i~ i -- OYW ij W j VF Q I O [W iv W jv -

(A.1.45)

So, we have

E [QJ (K-1)(K±Q)Q (A. 1. 46)

and so equation (A.1.34) (the fourth term on the right hand side of equation

(A.1.28) becomes

E[] (K-1)(K+Q) 7- (A. 1.47)E [K- Sxx E'XIO- (K_1)2
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We now have all the pieces of equation (A.1.28) in equations (A.1.29),

(A.1.33), and (A.1.47). Returning to equation (A.1.24), we see that we need

E(XH). Now equation (3.2.1.9) implies

S(Xi) 1x - E l'xxx(yc-px)  (A.1.48)

Now putting equation (A.1.28) together yields

cov(XH) K-'Exx - 2K-'Yxx + (K-1)(K+Q) Exx (A.1.49): ..,(K - 1l)2

6-

__~~~X :!:-(_) x .  (A. 1.50)

Now, insertion of equation (A.1.50) into equation (A.1.22) implies equation

(A.1.18) becomes

co [[ ec I I =z (KQ +1KEYXE -1 ExI (A. 1. 51)

so equations (A.1.51) and (A.1.17) combine in equation (A..3) to yield

equation (3.2.1.10).

'P

04

"N N

.X
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Appendix 2: Derivation of Equation (3.2.1.15)

Let

"- K+O -1 and c K-2 (A.2.l)
K-1 a K-rQ-1

We are interested in the conditions on p, such that

%!r?2"--c = C 1 -- C2 p2 I< 1 .(A. 2.2)

Let z, = p and let p, represent the smallest canonical correlation, now

2;= HI C1 c210 < c , I H 1- C2/ -  (A. 2.3)

I,
= c 1 1- c 2pJ - (A.2.4)

and

C.C. -2 (A.2.5)
C2 CL

5.-

substitution gives
4"

p.d

21 (A.2. 6)> K-2 K+Q -1

- . W, -"

'S%

S.a
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4,. K 1 - F (A.2.6)
_K+Q-1

but = p by assumption. so algebra reveals

2 1

.%

.

a,

plK(2

K -4-- -
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Appendix 3: Derivation of Equation (3.2.1.17)

Let

':"-....K +Q -i }P:'

" (I" )K-i I K-2 (A.3.1)
c (1.P) = ~ K-2 K+Q-1

K-Q -2

-Note c(i,,p) , c <1 , p > 0. Write

i c (', P) -c P, 2

S -- (A .3.2)

H (1 .

To start the induction let = 1 , then

= c(1,p) 1 ~cIP2Ii 1 _ 1 < 1, (A.3.3)

implies

%(1,P) c(1,p)I-c 2 < 1 -0 21 => p2  > c(1P)-I < 1. (A.3.4)

Hence conditions exist when Lv 1. Now, when P n+1

]7'-(n+1,p) f - c p,2 c(n+1,p) 1 -

q(n+1) = X (A.3.5)

2=2

. -p 1 - 2 1 -P n + I

0 , 4- i =

'" .'1-
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~inxc (n ±1,p [1 -C W (.36

,Pn- 1

Assume r(n+1) < I then

c(n -,p) 1 - -J ln+ 1
(n) < < 1 (A.3.7)

by an argument similar to that leading to equation (A.3.4). Now specify Pn~i

a at-',

.p i%-, ,

--. , .................-.- -')< ', (Sa.%
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Appendix 4: Derivation of Equation (4.2.4.1)

Now

E[XR. N(t)] =

'.%

and

var xR N(t)]=- % %

which implies

cov [X,XRjN(t)I = EIX XkN(t)I (A.4.1)

- forj=1, S and fork=1, , S. BY substitution

...co X X(t) = (A.4.2)

_,_.... _ _u_ -Pi(_ ) N(t) U,(k) - Pk(*)
E -N()t()__ [L- /.v~ )(1 -Pj( *))pj(*) Pk_ X/,~ )1 - (*))Pk(*

E V. U ,(
i~~ft)'..P(1 - - Pk(*)Pk(*)(jV (k

.1 o .- 
a - (
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N(t) N' t) 1
." -t U,(k) -Pk T P, *)Pk( (t iN(t

S,,,, m=l 1=1J

(A.4.3)

Now

1 t,,P, ..,, 
.. IVt 

02

,':-'.'- E pj(*)N(t) U, u (k) N(t) =p() ()~ ) (A.4.4)

So insertion of equation (A.4.4) into the above yields

=.j..-..) -coy - ( (t) 2]

E t N2 Urn (k) -p,(*)pk(*)N(t) N(t)
1-1 Mn-1

pj(*))P - Pk())Pk()

(A.4.5)

N(t) N(t)
Let Y, V" U (j) and Yk '- Um(k) . Now Y and Yk are the marginals

rn-I1-1 a-1

" - of a multinomial distribution. Hence

NV) j )(t)1 [y1(A 6E V, V ) Um(k) :N(t) = E Y, I (t (A.4.6)

% ..

*-',*.

. . . . . . .. . . . . . . . . . . . . . . . . . . . . .
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= coy 1 ,Y' N(t)] E [Y, '(t) ]E [ "N(t ) (A.4.7)

= -N(t)Pj(*)Pk(*) + +N(t)'p()pk(*) (A.4.8)

- So, equation (A.4.5) becomes (after some algebra),

coy [xR,XkR NV(t)

Vt 1- P (*))P(*)(I - Pk(*))Pk() [\(t)P()Pk(*) (A.4.9)

,:.." 
_p (*)pk(* )

__ __-""_ _ _ __ _ __ _ __ _ _(A.4.10)

.(1- pl(*))pj(*)(1 - Pk *))Pk( ()

11/

L (1 -- P(*))(1 -- Pk(*)) 
(A. 4. 11)

'. ".

04

........................................................... 
-+ -,.' ,++ ;.++ .P... ",,- .,',-:- +, -. ,+ .....
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Appendix 5: Proof of Relation (4.2.4.2)

In this appendix we establish that

"XR D - N (,RR) (A.5.1)
n ---

where XR ---- , • " ,Xs . Here there are 1, "'',s stations with positive

probability of being branched to from the CPU. We closely follow a similar

proof offered by Wilson and Pritsker (1984a, appendix A).

Let g (t) be the greatest integer in ak t for t >0. Here

lim Pk(*)
ak t- PCPUE[ with probab"lv 1 (A.5.2)

where k is the station branched to, pcpu is the utilization of the CPU, and

UcpU is the service time distribution of the CPU. Now express the

standardized routing variable X R (t) in terms of the partial sum process
~. ,.

n U (k) - 9

S,,(k) = V-_' , n>1. (A.5.3)

Wilson and Pritsker's proof is based on use of the "dissection" formula

X (t) -Zk(t) + Fk(t) + Rk(t) (A.5.4)

AT'

', - -:-
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where

Zk(t) S~~~g kt)1

i 1/2
Fk(t) = g(k,t )/N(k,t) - 1 Zk(t)

Rk(t) = g(k,t)/N(k,t) 1/2 SN(kt) - Sg(kt) g(k,t )1/2

(A.5.6)

In vector notation we set Z(t) = [Zi(t), ",Z.(t)]

XR(t) Z(t) + F(t) + R(t) (A.5.7)

To prove equation (A.5.1) we show that, given Z N,(0,E - 1))

"" ,tbVZ Vb 6 E*' (A.5.8)
t --- 00

Here, is the covariance matrix of standardized controls with one of the

controls removed (more on this below). To show this we examine the

p.

0,°
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Vasymptotic behavior of each component of b XR (t). First, we consider the

component b'Z(t). We compute the moment generating function of b'Z(t):

EExex({b'Z(t)}

-Mz(t)(b 0) (A.5.9)

Now the multivariate central limit theorem (Neuts (1973), pg 287) insures

D ~1~> (A.5.10)
fl (t)n -cc l 0

*In the next two paragraphs we demonstrate that > 0.

First, notice that if X is a p xl vector of random variables with positive

definite covariance matrix Exy then if we transform X as

=diag(o
1 , 0o7) (A.5.11)

coviZ} diag(o'-, (7;1~5) covW diag(T-', ,o7') (A.5.12)
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cov covX > 0 (A.5. 13)

hence the covariance matrix of the standardized random varibles is also

positive definite.

N

For notational convenience let N(t)= N, VU, (k)= Yk, and

N = [Nl,- ,N, then

- N N0. (A.5.14)

k-1

NOW

* -0 ~ ' , 3 with some X, #0 (A.5.15)

such that

s-is

-\-N 0 w.p. 1 (A.5.16)
k-

p"

[".

If we add (A.5.14) and (A.5.16) we get

E(1+X\k)Nk + N8, N w.p. 1(A. 5.17)
k-1

Now for all k, 1 k <s-1

0%I
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Pk(*) > 0 "- Pr Nk,,j=OJi#s > 0 (A.5.18)

- (l+Xk)N = N (A.5.19)

='k = 0 , (A.5.20)

and since Pk(*) > 0 , V k we have a contradiction. Therefore, the

* covariance matrix of the non-standardized (hence the standardized) controls

is positive definite. Now j > 0 validates (A.5.10) and this implies

lim

t Mz(t)( = MZ (Ob)

4.J
E exp{(Ob )Z}

E exp Ob'Zj

= Mb'z(0) (A.5.21)

-p•
b" I

04b

-. . . . . . . . . ..t.. ' -. .
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and equation (A.5.8) follows. Using nearly identical arguments to Wilson and

Pritsker, we can show that

D D
b F(t)- 0 , b'R(t) - ,0. (A.5.22)

t -4Ct -

To finish the proof we apply Slutsky's theorem twice and invoke the

Cramer-Wold theorem (implied in equation (A.5.8)).

1.

a.%'

t

2'
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~Appendix 6: FORTRAN Listings of' SLAM Models

"'

'-.

a.:

I.a a.

-:

a -•

.. -'

'ao.-

2. ?.:'
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c program main(input,output,tape5= input,tape6=zotpult,tape7,tape 1,
c ltape2,tape3,tape4)

program main
dimension nset(5000)
common qset(5000)

C>comrnon/scoml/ atrib(100),dd(100),ddl(100),dtnow,ii,mifa,mstop,nclnr
1,ncrdr,nprnt,nnrun,nnset,ntape,ss (100),ssl (100),tnext,tnow,xx(100)
common/ucoml/ depart (5) ,rmean (4),p(4,4) ,servt(4),ecount(2)
equivalence (nset(1),qset(1))
nnset= 5000
ncrdr= o
nprnt=6
ntape=7

read (ncrdr,*) (rmean(i),i= 1,4)

do12 i= 1,4
read (ncrdr,*) (p(i,j),j= 1,4)

12 continue

call slam
* stop

end
c

c
subroutine event(i)
common/scornl/ atrib(100),dd(100),ddl(100),dtnow,ii,mfa,mstop,nclnr

- . 1i,ncrdr,nprnt,nnrun,nnset,ntape,ss (100),ssl (100),tnext,tnow,xx(100)
- - cornmon/ucoml/ depart(5),rmean (4) ,p(4,4) ,servt(4),ecount(2)

ecount(l)z=ecount().-
if(tnow.gt.2000) ecount(2)=ecount(2)-l

goto (1,2),i

1 call arss
return

2 call endss
4 return

end
c

C

subroutine intlc
common/scornl/ atrib(100),dd(100),ddl(100),dtnow,ii,mnfa,rnstop,nclnr

1 ,ncrdr,nprnt,nnrun,nnset,ntape,ss( 100),ssl( 100),tnext,tnow,XX( 100)
common/ucoml/ depart(5),rmean(4),p(4,4),servt(4),ecount(2)
common/gcom5/ iised( 10),jjbeg,jjclr,mmnit.mmon,nname(5),nncfi,

&nnday,nnpt,nriprj (5),nnrns,nnstr,nnyr,sseed( 10),lseed( 10)
integer iseed(1000)
cornmon/ucom2/ multino(4)
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* if(nnrun.eq.1) then
do 1 i=1,1000

-~I continue
endif
iised(2)= iseed(nnrun)
x= drand(-2)

do 4 i=1,4
multino(i)= 0

4 continue

do 5 i= 1,2
ecount(i)= 0.

5 continue

do 6 1= 1,5
* depart(i)=0.

6 continue

* do 7i= 1,4
servt(i)= 0.

7 continue

do 10 i= 1,25
etime=expon(rmean(1),2.-)
ati( etm

atrib 3 =i
atrib 4 ==1
atrib(53 ~2
call schdl(ietime,atrib)

10 continue

do 11 i= 1,4
xx~i~zO

IIcontinue
write(6,99)nnrun

99 format(lx,'SLMULATION STUDY IN PROGRESS: RUN 'Ji4, 'OF

& 1000 RUNS')
return

* - end

sutbroutine endss
common/scorn 1/ atrib( 100),dd('100),ddl(100),dtnow~ii~mfa~rmstop~nclnr
1 .ncrdr~nprnt~nnruin~rnset.ntapess(100),ssl (100),tnext,tnow~xx(100)
comm-on/ucoml/ depart(3),rmean(4),p(4,4 ),servt(4),ecount(2)
rornmon/ilcom2/ multino(4)

rall schdl( 1,0.,atrib)
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myq=atrib(4)

if(nnq(myq ).ne.O) then
call rmove(1,mvq,atrib)
wait= tnow-atrib(2)
call colct(wait,myq)
rm~ rmean(rnyq)
service= expon(rm,2)
atrib(4)= atri b(5)
iat= atrib(4)-.OOO1
call nextguy(iat,inext)

C
c COLLECT STATISTICS WHRLE P.ARKED AT CPIU
c

if(iat.eq.2) then
multino(inext)= multino(inext) --

endif

atrib(5)= inext
call sc hdl(2,se rvice,at rib)
if(tnow.gt.2000) then

servt(myq)=: servt(myq) -service
depart (myq) =depart (myq) -I
depart(5)= depart(5)-I

endif
else

xx(myq>= .
endif

return
end

subroutine arss
cornmon/scoml/ atrib(l00),dd(100).ddl(100),dtnow,ii,mnfa,mstop,nclnr

1 ,ncrdr,nprnt,nnrun~nnset~ntape,ss (100),ssl (100),tnext,tnow,xx(l0O)
cornmon/ucom±, uepart(5).rrnean 14) ,p(4,4),servt(4),ecount(2)

N cornrnon/ucom2/ multino(4)

iat= atrib(5)

if(iat-eq.1) then
resp= tnow-atrib(1)
call colct('resp,l)

rm=rrnean( 1)
service:--expofl( rrn.2
,I?,,ib(I1)-=triow -servIfe
a trib(4)-
atri)( 5)=2

I,
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call schdl( 1,service,atrib)
zo.: if(tnow.got.2000) servt(iat)= servt(iat)--serv.ice

else
if(xx(iat).gt.O.) then

atrib(2)= tnow
call filem(iat,atrib)
return

else
wait= 0.
call colct(wait,iat)
rm= rmean(iat)
atrib(4)= lat
call next guy(ia t, inext)

c COLLECT STATISTICS WHTILE PARKED AT CPU
C

if(iat.eq.2) then
mu ltino(inext)=. multino(i next) -1

endif

-~ atrib(5)= inext
* service= expon(rm,2)

xx(iat)= 1
call schdl(2,service,atrib)
if(tnow.gt.2000) servt(iat)= servt(iat).-service

endif
endif

if (tnow.gt.2000) then
depart (iat)=d,--art (iat)+1
depart(5)= depart(5 )+1

* endif

return
end

C

subroutine nextguy(iat,inext)
common/ucornl/ depart(5),rmean(4),p(4,4),servt(4),ecount(2)

c urn=0.
u = unfrm(0., 1 .,2)

do 10 index= 1,4
cum= cum-p(iat,index)
if 'u.le.cumn) then

inext =index
goto 11

else

con t n
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1.0 continue

11 return
end

subroutine otput
cornmon/scornl/ atrib(100),dd(100),ddl( 10 0),dtnox,ii,mfa,rastop,nclnr
l,ncrdr,nprnt,nnrun,nnset,nitape,ss (100),ssl (100),tnext,tnow,xx( 100)
cornnlon/ucoml/ depart(5),rrnean (4) ,p (4,4) ,servt(4),ecount(2)
cornrnon/ucom2/ rnultino(4)

write 1,*)nnrun
write 1,~ (ecount (i),izz= 1,2)
write 1,~ (ccavg(i),i= 1,4)

4write 1,* (ttavg(l),1=2,4)
write 1,~ (servt(i),iz= 1,4)
write 1, (depart(i),i= 1,5)
write 1, (ffawt(i),i=2,4)
is urn

* do 1 i=1,4

1 continue
* write(1,*)(Multino(i),i r 1,4),isumn

* return
end
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*c program main input~output~ta pea= input,tape6=output,tape7,tapel,
c 1ltape2,tape3,tapel)

program main
dimension nset('5000)
common qIset(50)00)
common/ scoml/ atrib(100),dd(100).ddl(100O),dtnow,ii,mfa,mstop,nclnr

N-l,ncrdr~nprnt,nnrun,nnset,ntapess(100 ),sslI(100),t next, tnow,xx(1 00)-z - common/ucoml/ depart(10),rmean(10) ,p(10,10),servt(10),ecount(2)
cornmon/ucom2/ isubcap,nusssn,numcust,tclear,nstudy
equivalence (nset(1),qset(1))
nnset= 5000
ncrdr=o
n prn t=6
ntapewi

read (ncrdrj isubcap~nusssn, numcust, tclea r, nst udy
read (ncrdrj) (rmean(i),i= 1,nusssn-2)

do 12 i=1,nusssn-2

read (ncrdr,*) (p(ij).j= 1.nusssn-2)
12 continue

call slam
stop
end

subroutine event(i)
"Scommon /scoml/ atrib(100>,dd(liOOtddl(100),dtnow,ii.mfa,m-stop,nclnr

1.nicrdr,nprnt~nnruin,nnset~ntape,ss(100) ,ss(100),tnext,tnow,xx(100)
commnon/iicoml/ depart('10),rmean(10) .p(10.10),servt(10),ecount(2)

coma-on //iucom2/ isubcap,nuisssn,numcust,tclear,nstudy

ecount(1 = ecount( 1)-i
if(tnow.gt.tclear) ecount(2)z-ecount(2)-

oOto (1,2),i

I call arss
return

2 call endss
return
end

c

subroutine intlc
common/scomi/ atrib(100),dd(100),ddl(100),dtnow,ii,mnfa,mrstop,nclnr
1,ncrdr,nprnt,nnrun,nnset,ntaipe,ss( 100),ssl( 100).tnext,tnow,xx(100)
cornmon/ucoml/ depart(10),rmnean(l0)yp(10,10),servt(10),ecount(2)
common/ucom2/ isubcap,nusssn,numcust,tc lca rnstudy
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cornmon/gcom5/ iised(10),jjbeg,jjclr,mmnit,mmon,nname3),nncfl,
&nnday,nnpt,nnprj (5),nnrns,nnstr,nnyr,sseed( 10),lseed( 10)
common/ucom3/ multino(7)
integer iseed(2000)

if(nnrun.eq.1) then
do 1 ir=1,2000

1 continue
endif
iised(2)= iseed(nnrun)
x= drand(-2)

do 4 i=1,7
multi no (i 3 O

4 continue

do 5 i= 1,2
ecount(i)= 0.

5 continue

* do 6 i= 1,nusssn+3
depart(i)=0.

6 continue

do 7 i= 1,nusssn- 2
se rvt (i )= 0.

7 continue

do 10 i=1,numcust
etime= expon(rmean( 1),2)
atrib (1)=etime
atrib (3)=i
atrib (4)=I
atrib 5=
call schdl(1,etime,atrib)

10 continue

do 11 i=1,nusssn±2
xx (i) = 0.

-S'11 continue
write (6, 99)nn run, nstudy

99 forrnat(lx,'STvMATION STUDY IN PROGRESS: RUN 'Ji4, ' OF
&'i4,' RUNS')
return
end

c

c
suruin ns
subrotnesol ati(00,d10)dl10)dnwiima toscn

1, ncrd r,np rnt,nnrun, nnset, ntape,ss(I 100),ss( 1 00), tnext, tnow,xx( 100)
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cornmon/ucoml/ depart(1O),rmean(1O),p(1O,1O),servt(1O),ecount(2)
common/ucom2/ isubcap,nusssn,numcust,tc lea r,nstudy
corruon/ucom3/ multino(7)

call schdl(1,O.,atrib)
myq= atrib(4)

if(nnq(myq).ne.O) then
call rmove(1,myq,atrib)
wait= tnow-atrib(2)
call colct(wait,rnyq)
rm= rmean(myq)
service= expon (rm,2)
atrib(4)=atrib (5)
iat= atrib(4)F.OOO1
call next guy (i at, inext)

c
c COLLECT STATISTICS WHILE PARKED AT CPU
c

if(iat.eq.3) then
* ~multino(inext)= multino(inext)t-.

endif

atrib(5)= inext
call schdl(2,service, at rib)
if(tnow.gt.tclear) then

servt(myq)= servt(myq) +service
depart (myq) =depart (myq)i-1
depart (nusssn±3) =depart (nusss n+3) +1

end if
else

xx(myq)=O.
endif

if(myq.eq. 3. and.nnq( 2). gt.O. and. isubcap. ne.O. and. inext.eq. 1
&.and.nnq(myq).ne.0) then

4 call rmove(1,2,atrib)
service=O.
atrib(4)= atr ib(5)

call schdl(1,service, at rib)
endif

return
end

c

c
subroutine arss
cornmon/scoml/ atrib(100),dd(100),ddl(100),dtnow,ii,mfa,mstop,nclnr

1 ,ncrdr,nprnt,nnrun,nnset,ntape,ss(100) ssl( 100),tnext,tnow,xx(100)
common/ucoml/ depart(1O),rmean(1O) ,p(1O,1O),servt(1O),ecount(2)
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conmon/ucom2/ isubcap,nusssn,numcust~tclear,nstudy
commnon/ucom3/ multino(7)

iat= atrib(5)

if(iat.eq.1) then
resp= tnow-atrib(1)
call colct(resp,1)
rm= rmean(1)
service= expon(rm,2)
atrib (1) = tnow~service
atrib(4)= 1
atrib5=
call schdl(1,service,atrib)
if(tnow.gt.tclear) servt(iat)=: servt(iat) -service
gro to 101

endif

if(iat.eq.2) then
if(isubcap.ne.O) then

nuns ub =0
do 10 i=3,nusssn±2
numsub= numsub+nnq(i)+xx(i)

10 continue
if(numsub.lt.isubcap) then

if(nnq(2).eq.0) then
wait= 0.
call colct(wait,2)
service= 0.
atrib(4)=2
atrib (5) =3
call schdl(1,service,atrib)
go to 101

else
atrib(2)= tnow
call filem(2,atrib)
call rmove(1,2,atrib)
wait= tnow-atrib(2)

4., ~call colctwat2
atrib (4)=2
atrib (5) =3
service=O
call schdl(l,service,atrib)
go to 101

endif
else

atrib(2)= tnow
call filem(2,atrib)
return

endif
endif

endif

04 :



100 if(xx(iat).gt.O.) then
;atrib(2)=tnow
call filem(iat,atrib)
return

else
wait= 0.
call colct(wait,iat)
rm= rmean(iat)
atrib(4)= iat
call next guy (ia t, inext)

C

c COLLECT STATISTICS WHILE PARKED AT CPU

if(iat.eq.3) then
multino(inext)==multino(inext)-rl

endif

atrib(5)= inext
service= expon(rm,2)
xx(iat)= 1
call schdl(2,service,atrib)

*if(tnow.gt.tclear) servt(iat) =servt (iat)--;-service
endif

101 if (tnow.gt.tclear) then
depart ( at)=depart(iat)-vi
depart (nusssn-*3)= depart(nusssn+3)t1

endif

return
end

c

c
subroutine nextguy(iat,inext)
conrnon/ucoml/ depart(1O),rmean(10),p( 10, 10),servt(1O),ecount(2)
commnon/ucom2/ isubcap,nusssn, numcust, tc lea r, nstudy

cum=O.
u= unfrm(0.,1.,2)

do 10 index= 1,nusssn+2
cum= cum+p(iat, index)
if(u.le.cum) then

inext= index

else
continue

endif
10 continue

11 return

7 2 -
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end

subroutine otput
cornmon/scoml/ atrib (100), dd(l 00), ddl (100), dtnow, ii,rnfa, ms top, nclInr

1.ncrdr,nprnt,nnrun,nnset,ntape,ss(100~ ssl(100),tnext,tnow,xx( 100)
coinmon/ucoml/ ,eat1)renI p(1O,1O),servt(10),ecount(2)
common/ucom2/ isubcap,nusssn,numcust,tclear,nstudy
cornrnon/ucom3/ multino(7)

write 1,*)nnrun
write 1,* ecount(i),i= 1,2)
write 1,* ccavg(i) ,i= l,nusssn±2)

~ -:write 1,* ttavg(i),i= 2,nusssn+2)
write 1,* servt(i),i= l,nusssn+2)
write 1,** depart(i),i=1l,nusssn+3)
isum= 0
do 1 i=1,7
isum= isum+multino(i)

1 continue
write (1,*)(multino(i),i= 1,7),isum

return
end
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Appendix 7: FORTRAN Listing of the Analysis Program
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c program tree(input,outputtape7,tape51nputtape6=output)

This program uses an "all possible regressions" approach to *
select the best subset of controls from a given candidate set.

.- It assumes that certain number of meta-experiments have been
* performed each with the same number of replications. Once the
* optimal subset has been identified, a confidence region is *

constructed about the mean vector for the responses. Coverage
and volume reduction is tallyed and subsequently summarized. *

* The program can be run in two modes. The user can either
* estimate the covariance matrix of controls or incorporate
* it directly. The program variable "iknow" dictates which
* option is in effect (see code below).

* The program can also be run in the "best m" regressions mode. *
* ( Currently only configured for estimated covariance matrix

..* of controls) *

_ In other words it will compute the best m subsets of each
*O * possible subset size. This can be of interest if a single set

• of data is used. *
• ,,* *

* *

* PARAMETERS TO BE INITIALIZED:

* nx = # of candidate controls *

* ny = + of responses *
• keepers # of best regressions to be kept *

-' * (m in "m best" as above) *

* numreps # replications per meta experiment *
*-" -" meta = # of meta experiments

* NOTE:

-"* IN SUBROUTINE COVER: nx2 AND ny2 MUST BE SET *
",".* TO nx and ny RESPECTIVELY. *

(IN THE PARAMETER STATEMENT) *

program tree
- -'. parameter (nx=7,ny=2,nvar= nx+ny,keepers=6,knx=2**nx)

parameter (numreps=20,meta=50)
parameter(nl=nvar,n2=numreps,n3= numreps,n4= 1,n5= 1,n6=0)_It-:: - _ _parameter(nn1= ((nl *(nl +1i))/2))

common sig,kk,iqq,ip
character*25 title,respons(ny),control(nx)

... real a(nvar,nvar,nvar)
real wkarea(ny),rss(ny,ny),dum(ny)
integer nk(nvar)
dimension x(n3,nl),nbr(6),temp(nl),xm(nl)

*.%
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real vcv((nl*(n1--1))/2),fulIlI(n 1,11)
real regr(keeperg,nx,2),buff(keepers)bufl2-(keecpers)
real ff(o:nx)
external f
integrer mode ls(knx,nx),ibuff(nx)
integer ih(nl)
integer icover(4) ,ictot(4)
real vecybar(ny), vr(2),vol red (2), cove rag(4)
real vecmuy(ny),vecmuc(nx),ybar(ny),cbar(nx),veccbar(nx)
real covcv(nx,nx)
real target(ny,ny)

data vecmuc/O.,O.,O.,O.,O.,O.,O./
data vecybar /-48.31305,.4132402/
data vecmuy /81.71,.413/
data veccbar /-2. 169668E-02,-1.416941E-02,5.544987E-02,

& -1.809913E-02
& ,3.908565E-02,-1.957430E-02,3.610350E-03/
data title/'MODEL5:TRXNSFORMTlED'/
data respons/'SYSTEM RESPONSE TIME',

& 'CPU UTILIZATION I/
data control/'ROUTING VARIABLE (1)',

& 'ROUTING VARIABLE (3)',
& 'ROUTING VARIA-BLE (4)',
& 'WORK VARIABLE (1)',
& 'WORK VARIABLE (2)',
& 'WORK VARIABLE3'
& 'WORK VARIABLE 14'/

open (unit= 1,file ='out. model. 5',sta tus ='new')
write( 1,3 1) title,meta,numreps,meta *numreps

31 format(lx,a25,'meta = ',i3,' numnreps = ',i3,' total reps
&i4)
write( 1,32)meta*numreps

32 format(lx,'the response are',13x,'mean ',i4,' reps',2x,
&'steady state mean'/)
do 33 i= 1,ny
write( 1,34)i,respons(i),vecybar(i),vecmuy(i)

34 format(2x,i2,lx,a25,fl2.5,4x,f12.5)
33 continue

write(1,35)
35 format(' ')

write( 1,36)meta*numreps
36 format(lx,'the candidate controls are',3x,'mean ',i4,' reps',

&2x,'steady state mean'/)
do 37 i= 1,nx
write(1,34)i,control(i),veccbar(i),vecmuc(i)

37 continue
write(1,35)

c iknow IS THE FLAG FOR USE OF THE KNOWN COVARIANCE MATRIX
c OF CONTROLS
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e iknow - 1 known coy used
c iknow - 0 coy estimated
C

iknow- -0

if(iknow.eq.0) then
write(1,38)

else
write(1,39)

endif
38 format(/,lx,'COVARIANCE MATRD( OF CONTROLS WAS ESTLDATED')
39 format(/, Ix,'KNOWN CO VARIANCE LATRIX OF CONTROLS WAS USED')
C

c HERE WE READ THE KNOWN COVARLANCE STRUCTURE OF CONTROLS
c (IF REQUIRED)

if(iknow.eq.i) then
open(unit = 3,file= 'cov.model.5',status= 'old')
rewind 3
do 21 i=l,nx
read(3,*)(covcv(i,j )j 1,nx)

21 continue
- - endif

nbr(1)=n
nbr 2)=n2
nbr 31=n3
nbr 4 =n4
nbr 5 =n5
nbr 6 =n6
ix=n3
sig= .90

c
c MAKE THE F TABLE
c

ip=ny
kk=nurnreps
call ftabl(ffnx)
print *,'f table',ff

c
c iwrite = 0 Meta Experiment mode
c iwrite = 1 Best m Regressions mode
c (m=keepers above)(meta = 1)

iwrite= 0

c

c NTAIECVRAEA)VLM EUCINACMLTR
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do 850 iz=1,4
ictot(iz)=O

1.50 continue
do 851 iz= 1,2
v r(i z) =0.

5 15 continue

- - c THIS IS THE META EXPERIMENT LOOP

do 1000 mm= 1,meta

c*~i c INITIALIZE ARRAYS

numreg= 0
do 999 iz=1,keepers
do 999 jz=1,nx
do 999 kz=1,2
regr(iz,jz,kz)=0.

999 continue
*- do 998 iz=1,knx
,. '.: do 998 jz=1,nx

models(iz,jz)=O
998 continue

do 997 iz=1,nvar
- do 997 jz=1,nvar

do 997 kz=1,nvar
a(iz z ,kz)= O.

997 continue
.- "do 996 iz=1,keepers

buff(iz)=O
buff2(iz)= 0

996 continue
do 995 iz=1,nx
ibuff(iz)= 0

995 continue

c
c READ THE DATA (each record => [controls responses])
c COMPUTE THE COVARIANCE MATRIX
c SAVE SAMPLE MEANS
c BOUND THE GENERALIZED VARIANCE
c

*55.,. do 10 i= 1,n2

read(5,*)(x(ij),j= 1,nl)
'. -* 10 continue

call becovm(x,ix,nbr,temp,xm,vcv,ier)
do 13 i=1,nx
cbar(i)=xm(i)

13 continue

-S..%
-S.%

04
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(10 1-1 I=nx-1,nl
%,bar(i-nx)= xm(i)

1-4 continue
call vcvtsf(vcv,nl~full~nl)
do 11 i=1,nl
do 11 j=z1,n1
a (1 ,i,j)= full (i ,j)

11 continue
77 is=1I

do 99 ii= 1,ny
do 99jj =1,ny
if(jj.gt.ii) then

rss (jj,ii)= zrss (ii,jj)
else
if(ii.eq.jj) then
rss( ii,jj ) =a(is ,nx-ii, nx -jj)

endif
endif

() 9 continue
iopt= 5
call linv3f(rss,dum,4,ny,ny,dl,d2,wkareaier)
if(ier.ne.O)print * ,"IDLfED BELOW 99"

big= (float(numreps.1)/float(numrepsnx2))4*nv
two=2*big*dl*2**d2

c
c STUFF THE BOOKKEEPING ARRAY WITH THE BOUND)
c

do 200 ii= 1,keepers
do 200 jj =1, nx
regr(ii,jj,1)= two

200 continue

c CONDUCT A BINARY SEARCH OF THE REGRESSION TREE
C FURNIVAL ANT) WILSON (1974)
c

k =nx

do 1 1= 1,k
nk(l)=O

1 continue
nk(k+1)= 1

C.2 nk(l)= 1
do 3 m=l,k
if(nk(m+1).eq.1) go to 4

3 continue
4 call gauss(k-m+1,k-l+2,k-l+l,a,nvar,nvar)

c CALCULATION OF THE GENERALIZED RESIDUAL COVARIANCE



is=k-l--2
do 100 iiz= 1,nv
do 100 jj = 1,n v

V if(jj.gt.ii) then
rss~iijj )= a(is,nx-i,nx--jj)
rss\jj,ii)= rss (ii,jj)

else
if(ii.eq.jj) then
rss(ii,jj )=a(is,nx-ii,nx--jj)

endif
endif

100 continue
ioptr--5

if(iknow.eq.0) then
* call linv3f(rss,dum,4,nv,ny,dl,d2.wAkarea,ier)

- I if(ier.ne.0)print ,"I.Difl) BELOW 100"
det=dl*2**d2

endif

c BOOKKEEPING LOGIC TO SAVE M=KEEPERS BEST REGRESSIONS
c OF ALL J SUBSETS SIZES
c

mv= o
do 300 n=1,nx
mv= my ±nk (n)

300 continue

if(*,know.eq.0) then
cons t =(float (n umreps- 1) )/float (numreps-mv- 1))
det= det*const**ny

else
call covknow(rss,ny,full,nvar, target, dum,numreps 1mv~det)

endif

do 301 j=1,keepers
if(det.lt.regr(j,mv,1)) then

numreg= numreg+1
do 302 jj=j,keepers-1

buff(jj +i)= regr(jj ,mv, 1)
buff2(j+1)= regr(jj,mv,2)

302 continue
regr (j,mv,1 )=det
regr (j,mv,2) =numreg

do 303 jj=j+,keepers
regr (jj,mv,1 )=buff(jj)
regr (jj,mv,2) =buff2 (jj)

303 continue
call keepit(numreg,nk,nx,models,knx,nvar)



go to 30-4
endif

301 continue
3041 continue

do 5 1= 1,k
if(nk(l).eq.0) go to 2
nk(l)=0

5 continue
C
c THIS BLOCK IS FOR BEST MI SUBSETS MODE OF OPERATION
C

if(iwrite.eq.i) then
do 500 i= 1,nx
write(1,600) keepers,i

600 format(10x,'best ',i2,' regressions with ',12,' variables'//
do 500 j = 1, kee pers
ivar= 0
ii n 0
do 400 ii=nx,1,-!
ivar= ivar±1
if( ifix(regr(j,i,2)-.0001 ) eq.0) go to 500

*if( modeIs (ifix(regr(j, i,2) i-.000 1), ii). eq. 1) then

ibuff(iin)=- ivar
endif

*400 continue
rdet==regr (j,i,1)
write(i,6O ) rdet,(ibuff(ij ),ij= 1,iin)

601 format(lx,e16.8,l0x,30 (i2,lx))
500 continue

endif

C

c FOR EACH SUBSET COMPUTE THE CRITERION AND SAVE THE MINP]UM
C

if(iwrite.eq.0) then
ip:=ny
kk= numreps
do 650 iq= 1,nx

if(iknow.eq.0) then
regr(l,iq,1)= regr(1,iq,1)*c3(kk,iq,ip)*cfront(kk,iq,ip)*

& ff(iq)
else
regr( 1,iq, 1)= regr(1,iq,1)*c4(kk,iq,ip)*cfront(kk,iq,ip)*

& ff(i q)
endif

650 continue
do 7-00 iq= 1,nx
if(regr(1,iq,1).It.rrnin) then

J4v
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rmin=: regr(1,iq,1)
iat== regr(1,iq,2)

endif
700 continue

ivar=O
nn=0

do 750 ii~nx,1,-l
ivar= ivar-1
if(models(iat,ii).eq.1) then

ibuff(iin)= ivar
endif

7-50 continue
sp= rmin
write (1, 60 I)sp, (ibuff(ij), ii 1,iin)

c FIND THE VOLUME REDUCTION AND INDICATE COVERAGE

call cover(vcv,nl,nnl,models,knx,nx,iat,iin,ybar
&, cba r,vecmuc, ny,vecmuy,numreps, ff, ih, icover, vol red,vecyb ar

&,Iknow,covcv)

c COVERAGE AN]) VOLUME REDUCTION TALLYS

do 800 ic= 1,4
ictot(ic)= ictot(ic)-ricover(ic)

800 continue
do 801 ic= 1,2

81vr(ic)=vr(ic)tvolred(ic)

endif

print *,"THIS IS vIETA-EXPERLMNENT " ,mm, icover ",icover

1000 continue

do 1001 iz== 1,2
vr(i z) = vr(i z)/float (meta)

1001 continue
do 1002 iz=1,4
coverag(iz)= float(ictot(iz))/float(meta)

1002 continue

write(1, 602)cove rag (1), vr(l1)
602 format (lx,'con trld coverage on ta:

&' vol reduct ',e16.*8)
write (1, 603)cove rag (2)

603 forrnat(lx,'uncontrld covema~w
write(1,604)coverag(3),,.vr(1I

604 forrnat(lx,'contrld oe:
Livol reduct '.eMI6A

Vrt(1,0)o'r

No4
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605 format(1x,'uncontrld coverage on sample mean of 1000 reps',f12.8)

stop
end

subroutine gauss(ib,is,ip,a,kp,nvar)
C
c THIS SUBROUTINE PERFORMS THE PIVOTS FOR VARIABLE
c INTRODUCTION INTO REGRESSION MODELS
c FURNIVAL AND WILSON 1974
C

real a(nvar,nvar,nvar)
lb=ip+l

C

c TOLERANCE CHECK ON PIVOTS
c

if(a(ib,ip,ip).lt..01) then
do 10 l=lb,kp

a(is,ip,1)= a(ib,ip,l)
do 10 m=l,kpa(is,l,m)=a(ib,l,m)

10 continue
return

else
do 1 I=lb,kp
a(is,ip,l)= a(ib,ip,l)/a(ib,ip,ip)

do I m=l,kp
. . a(is,l,m)--a(ib,l,m)-a(ib,ip,m)*a(is,ip,1)

1 continue
return

endif

end

subroutine keepit(numreg,nk,nx,models,knx,nvar)
C
c THIS SUBROUTINE FINDS THE MODEL OF A CANDIDATE REGRESSION
c

integer nk(nvar),models(knx,nx)
do 1 i=1,nx
models(numreg,i)= nk(i)

1 continue
return
end

c
c THE FOLLOWING FUNCTIONS ARE USED TO COMPUTE THE SELECTION
c CRITERION
c

A
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real function c3(k,iq,ip)
c3= c (k,iq,ip)*c2(k,iq,ip)
return
end

real function c4(k,iq,ip)
prod= 1.
do 10 i=1,ip
top= float (k-iq-i)
bot= float (k-iq-1)
prod= prod* (top /bot)

10 continue
c4=prod
return
end

real function cfront(k,iq,ip)
top= float (k-iq-1)
bot =float (k-iq-ip)
cfront= (top/bot)**ip
return
end

real function el(k,iq,ip)
prod= 1.
do 10 i=1,ip
itop= (k-iq-i)
ibot= (k.-iq-l) *k
term- float itop)/float(ibot)
prod=prod term

10 continue
c1~prod
return
end

real function c2(k,iq,ip)
sum=0.
p1 = 1 .
p2= 1.
do 10 j=0,ip
ileft=j comb(ip ,j)
if(j.ne.O) then

rnext= p1/p2
else

rnext= 1.
endif
term= floa Wleft)* rnext
sum=sum+term

10 continue
c2=sum
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return
end

integer function jcomb(n,m)
itop=nfact n)
ibot=nfact n-m)*nfact(m)
j comb =itop /ibot
return
end
integer function nfact(m)
if(m.eq.0)then
nfact= 1
return

endif
ip= m
iloop= r-i
do 10 i=iloop,2,-l

10 continue
nfact= ip
return
end

c
c THIS SUBROUTINE COMPUTES A F TABLE (TO THE POWER P)

A C

subroutine ftabl(ffnx)
common sig,kk,iqq,ip
real root(1), last, ff(0: nx)
external f
eps=.0O1
nsig= 5
nroot= 1
itmax= 1000
last=3.
do 10 iqq=0,nx
root(1)= last

101 call zreal2(f,eps,eps eps,ns ig, nroot, root, itmax, ier)
~*1 if(ier.eq.33) then

root(l)=last+1.
ler=0
write(6, 102)

*102 format(lx,'ignore last ier=33 warning -- reinitializing')
go to 101

endif
last= root (1)
fp=root( ) **jp
ff(iqq)= fp

10 continue
return
end

real function f(z)
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common sig,kk,iqq,ip
nl=ip
n2= kk-iqq-ip
call mdrd(z,nl,n2,p,ier)

-' f= sig-p
return
end

subroutine cover(vcv,nl,nnl,models,knx,nx,iat,iin,ybar
&,cbar,vecmuc,ny,vecmuy,numreps,ff,ih,icover,volred,vecybar
&,iknow,covcv)

C
c THIS SUBROUTINE, DOES THE COVERAGE AN]) VOLUME REDUCTION CALO
c FOR THE OPTIMAL CONTROL SUBSET

parameter(nx2=7,ny2==2,n12= nx2+ny2,nnl2= ((n12*(n12±1))/2))

real vcv(nnl),ybar(ny),cbar(nx),vecmuc(nx),vecmuy(ny)
&,ff(O:nx),vecybar(ny),volred(2),covcv(nx,nx)
integer models (knx,nx), ih(n 1), icove r(4)

real scbar( nx2),svecmu(nx2),subv(nnl2),subvf(n,12,n12)
&,b(n12 ),wkarea (2*n12),buffl(n12,n12),buff2(ny2,nx2)
&,beta(ny2,nx2),cdevl(l,nx2cdev2(nx2,1),expl(ny2,ny2)

&,buff4(ny2,ny2),sydotc(ny2,ny2),hph( 1, ),t 1(1,nx2)
&,ymdl(1,ny2),ymd2(ny2,1),t2 ( ,ny2),obs(1,1)
&,buff5(ny2,ny2),buff6(ny2,ny2) ,ymd3(l,ny2),ymd4(ny2,I)
&,obs2(1,1)
&,symcovc((nx2*(nx2+1))/2,,subcovc((nx2*(nx2+1))/2)
&,fulcovc(nx2,nx2),garnrna(ny2,nx2)
& ,ehat(ny2 ,ny2) ,buff9 (ny2,ny2)
&,cancorr(ny2,ny2),reigs(ny2),eigs(2*ny2),dummy(ny2,ny2)
&,wk(ny2)
integer ih2(nx2)
complex ceigs(ny2)
equivalence (eigs(1),ceigs(1))

* C
c INITIALIZE COVERAGE AND VOLUME REDUCTION VECTORS
C

do 8 i=1,4
icover(i)= 0

8 continue
do 9 i=1,2
volred(i)=O.

g continue

c
C FIND THE SUBMATRD( FOR THE SELECTED MODEL

IC
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do 10 i=1,nl
if(i.le.nx) then
ih(i)=
ih2 (i)=O

else
ili ( I) =1

end if
10 continue

ivar= 0
do 50 ii=nx,1,-l

ivar= ivar+1
if(models(iat,ii).eq.1) then
ih(ivar)= 1
ih2(ivar)= 1

endif
50 continue

ml=nl
call rlsubm(vcv,ml,ih,subv,m2)

c
c FIND THE SUBVECTOR (POPULATION AND SAMPLE) OF THE
c CONTROL MEANS
c

index= 0
do 100 Hi= 1,nx

if(ih(ii).eq.1) then
index= index+1
scbar(index)= cbar(ii)
seicmu(index) vecinuc(ii)

100 continue

c
c BUFFER THE COVARIANCE MATRIX OF SELECTED CONTROLS
c AND RESPONSES
c

call vcvtsf(subv,m2,subvf,n12)

do 101 1= 1,m2
do 101 j=1,m2

buffl(i,j)=subvf(i,j)
101 continue

c
c INVERT THE COVARIANCE SUBMATRDC OF CONTROLS
c

call linv3f(subvf,b,1,iin,n12,dl,d2,wkarea,ier)
if(ier.ne.0)print *,"fIlDIT BELOW 101"
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c

c BUFFER THE CROSS-COVARIANCE STJBMATRICES OF SELECTED CONTR'
c WITH RESPONSES
C

do 102 i=iin+1,m2
do 102 j =1,iin

bUif2(i-iinj )=buff (ij)
buif3(j,i-iin) =buffl (ij)

102 continue

C

c BUFFER THE COVARIANCE SUBMATRDC OF RESPONSES
C

do 105 i=iin+1,in2
do 105 j=iin+1,rn2

buff4 i-iin,j-iin )=buifl (ij)
105 continue

c

c FIND THE BETA HAT MATRIX ( CONTROL COEFFICIENTS)
c OR THE GAMMA HAT MATRIX

if(iknow.eq.0) then

call vmulif(buif2,subvf,ny2,iin,iin,ny2,n12,beta,ly2,ier)

else

call vmuliffbuif2,subvf,ny2,iin,iin,ny2,n 12, beta,fly2, ier)
call vcvtfs(covcv,nx2,nx,symcovc)
call rlsubmn(syxcovc,nx2,ih2,subcovc ,iorder)
call vcvtsf(subcovc,iorder,fulcovc,nx2)
call linv3f( fulcovc,b,l,iin,nx2,dl,d2,wkarea,ier)
call vmulif(buff2,fulcovc,ny2,iin,iin,ny2,nx2,gamma,ly2,ier)

endif

c
c FIND THE VECTOR OF CORRECTIONS TO CONTROL Y BAR
c

do 103 i= 1,iin
cdevl W,i) scbar(i)-svecrnu(i)
cdev2 (i,1 =cdevl(1,i)

103 continue

if(iknow.eq.0) then
call vmnulf(beta,cdev2,ny2,iin, 1,ny2,nx2,dev,ny2,ier)

else
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call vmulff(gania,cdev2,ny2,iin,l1,ny2,nx2,dev,ny2,ier)
endif

C

c FIND THE CONTROLLED ESTIMATOR OF THE MEAN
C

do 104 i=1l,ny2
ybhat(i)= ybar(i)-dev(i, 1)

104 continue

c
c FIND THE MATRIX OF EXPLAINED COVARIANCE DUE TO
c CONTROL
C

call vmulff(beta,buff3,ny2,iin,ny2,ny2,nx2,expl,ny2,ier)

c
c FIND THE RESIDUAL COVARIANCE
c

c = (float(numreps-1)/float(nuxnreps-iin-1))

do 106 i=1,ny2
do 106 j = ,ny2

16buff5(i,j) =sydotc (ij)
16continue

c
c FIND THE ESTIMATOR SIGMA TILDE HAT
c

if(iknow.eq.1) then

constl= (float (nmreps-2)) /( float (numnreps *(numreps-1)
const2= (float (iin+1 ))/(float (numreps*(numreps-1)))
do 206 i=1,ny2
do 206 j =,ny2
ehat(i,j)= (constl*sydotc(lij))+(const2*buff4(i,j))

26buff 9(i,j)=ehat(i,j)
26 continue

endif

c
c FIND THE INVERSE RESIDUAL COVARIANCE MATRIX
c

if(iknow.eq.0) then
call linv3f(sydotc,b,1,ny2,ny2,dl,d2,wkarea,ier)

else
call linv3f(ehat,b,l,ny2,ny2,dl,d2,wkarea,ier)

endif

c

* 6N
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c COMPUTE THE DEVIATIONS FROM THE STEADY-STATE
c RESPONSE VECTOR
c (both cases: controlled/uncontrolled)
c

do 107 i=l,ny2
ymdl( 1,i) =ybhat(i)-vecmuy(i)
ymd2 (i,1) =ymdl 1,i)
ynd3 (1,1) =ybar(i)-vecmuy(i)ymd4(i,1)=ymd3(1,i)

107 continue

c
c COMPUTE H'H
c (Notation as per Venkatraman and Wilson 1986)
c

if(iknow.eq.0) then
call vmulff(cdevl,subvf,l,iin,iin,1,n12,tl,1,ier)
call vmulff(t1,cdev2,1,iin,1,1,nx2,hph,l,ier)

endif

if(iknow.eq.0) then
x--(1./float (numreps))+(1./float(numreps-1))*hph(1,1)

else
x=1.

endif

c
c COMPUTE THE RIGHT HAND SIDE
c FOR THE CONFIDENCE REGION
c AS PER RAO (1967)
cE (#

c2= (float( numreps-in-1)* ny2)/float(numreps-iin-ny2))
f= exp((1./float(ny2))*alog(ff(iin)))
rhs=x*c2*f

C

c COMPUTE THE T**2 STATISTIC
c FOR THE CASE WHERE CONTROLS ARE USED
c (steady state assumed)
c

if(iknow.eq.0) then
4:,. call vmulff(ymdl,sydotc,l,ny2,ny2,1,ny2,t2,1,ier)

call vmulff(t2,ymd2,1,ny2,1,1,ny2,obs,1,ier)
else
call vmulfymdl,ehat,,ny2,ny2,1,ny2,t2, 1,ier)
call vmulff t2,ymd2,1,ny2,1,1,ny2,obs,1,ier)

endif
" ' c

c INDICATE COVERAGE
c FOR THE CASE WHERE CONTROLS ARE USED
c (steady state assumed)

'P
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if(obs(ij).le.rhs) then
icover()= =1

else
icover( 1)= 0

endif

C

c COMPUTE THE VOLUME REDUCTION
C

if(iknow.eq.O) then
call linv3f(buff4,b,4,ny2,ny2,dl,d2,wkarea,ier)
ucdet= dl*2**d2
call linv3f(buff5,b,4,ny2,ny2,dl,d2,wkarea,ier)
cdet==dl*2**d2

else
call linv3f(buff4,b,4,ny2,ny2,dl ,d2,wkarea,ier)
ucdet=dl*2**d2
call linv3f(buffg,b,4,ny2,ny2,dl,d2,wkarea,ier)
cdetz=dl*2**d2

endif

terml= (cdet/ucdet)**(.52*x**(float~iny2)/2.)
c3= float ((numnreps-iin-i) ( numnreps)*(nurnreps-ny2))
c4 = float(k(knumreps-iin-ny2) *(numre ps-i))
term2= (c3/c4)**(floatjny2)/ 2.)
N = exp((1. /float ny2)) alo (ff(0)))

volred(i)=(1.-(term1 term2*term3))*100.

c
c COMPUTE THE T**2 STATISTIC
c FOR THE CASE WHERE no CONTROLS ARE USED
c

call linv3f(buff6,b,l,ny2,ny2,dl,d2,wkarea,ier)
call v'mulff(ymd3,buff6,1,ny2,ny2,1,ny2,t2,1,ier)
call vmulff( t2,ymd4,1,ny2,1,1,ny2,obs2,1,ier)

c COMPUTE THE RIGHT HAND) SIDE
c FOR THE CONFIDENCE REGION
C

c 5 =(float ((numreps- 1) *ny2) /float ((numreps-ny2) *nurnreps))
rhs2 = exp ((I1. /float (ny2)) *a log(ff(01 )* c5

c
c INDICATE COVERAGE
c FOR THE CASE WHERE no CONTROLS ARE USED
c (steady state assumed)
c

* if(obs2(1,1).le.rhs2) then
icover(2)= 1

else
icover(2)= 0
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endilf
C

c THE REMAINING ANALYSIS DUPLICATES THE ABOVE SAVE THAT
c THE GRAND MEAN OF 1000 RESPONSES IS USED
C

c RECOMPUTE DEVIATIONS
c

do 108 i=l1,ny2
ymdl(1,i)=ybhat(i)-vecybar(i)
ymd2 (i,1) =ymdl( 1,i)
ymd3 (1,i) =ybar(i-vecybar(i)
ymd4 (i,1) =ymd3 (1,I)

108 continue

C
c COMPUTE THE T**2 STATISTIC
c FOR THE CASE WHERE CONTROLS ARE USED
c (Grand mean used)

if(iknow.eq.0) then
call vmulff(ymdl,sydotc,l,ny2,ny2,1,ny2,t2,1,ier)
call vmulff(t2,ymd2,1,ny2,1,1,ny2,obs,1,ier)

else
call vmulff(ymdl,ehat,1,ny2,ny2,1,ny2,t2,1,ier)
call vmulff(t2,ymd2,1,ny2,1,1,ny2,obs,1,ier)

endif

c

c INDICATE COVERAGE
C FOR THE CASE WHERE CONTROLS ARE USED
C

i(obs( ,).le.rhs) then

icover(3)- 1
else

icover(3)= 0
endif

c COMPUTE THE T**2 STATISTIC
c FOR THE CASE WHERE no CONTROLS ARE USED
c (Grand mean used)

call vmulff(ymd3,buff6,1,ny2,ny2,1,ny2,t2,1,ier)
call vmulff(t2,ymd4,1,ny2,1,1,ny2,obs2,1,ier)

c
C INDICATE COVERAGE
cFOR THE CASE WHERE no CONTROLS ARE USED

if(obs2(1,1).le.rhs2) then
icover(4)== 1

else
icover(4)-=0

& - , %.
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endif
C

c THIS SECTION COMPUTES THE CANONICAL CORRELATIONS
C FOR THE SUBSET MODELS AND THE FEASIBILTY BOUND
c FOR USING THE KNOW CO VARIANCE MATRIX OF CONTROLS
C

if(iknow.eq.1) then
call vrnulff(buff6,expl,ny2,ny2,ny2,ny2,ny2,cancorr,ny2,ny2,ier)
call e igrf(cancorr, ny2,ny2,0,eigs, dummy, ny2,wk, ier)

icount=0
do 300 i= 1,ny2
do 300 j=1,2
icount= icount +1
if(j.eq.1) reigs(i)=sqrt(eigs(icount))

300 continue

ctop=-float((numreps+iin-1)*(numreps-iin-2))/
& float ((numreps- 1) *(numnreps-2))

cbot= ctop* (float(nurnreps-2) /float (numreps +ii n- 1))

* print *,"Canonical correlations ",reigs," Bound ",bound
print *,eigs

endif

return
end

c
c THIS SUBROUTINE RETURNS THE GENERALIZED VARIANCE

subroutine covknow(rss,ny,full,nvar,target,dum,numreps,mv,det)

real rss(ny,ny),full(nvar,nvar), target (ny,ny), d ux(ny)

cl=( float (numreps-2) /float (numreps * (numreps- mv- 1)
c2= (float (rv+1)/float(numreps*(numreps-1)))
nx= nvar-ny

do 10 i= 1,ny
do 10 j= 1,ny
target(i,j)= (ci1 * rss(ij))±+(c2 *full (nx ~inx~j))

10 continue

call linv3f(target,dum,4,ny,ny,d1,d2,wkarea,ier)
det=dl*2**d2
return
end
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